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A B S T R A C T   

Understanding and mitigating land subsidence (LS) is critical for sustainable urban planning and infrastructure 
management. We introduce a comprehensive analysis of LS forecasting utilizing two advanced machine learning 
models: the eXtreme Gradient Boosting Regressor (XGBR) and Long Short-Term Memory (LSTM). Our findings 
highlight groundwater level (GWL) and building concentration (BC) as pivotal factors influencing LS. Through 
the use of Taylor diagram, we demonstrate a strong correlation between both XGBR and LSTM models and the 
subsidence data, affirming their predictive accuracy. Notably, we applied delta-rate (Δr) calculus to simulate a 
scenario with an 80% reduction in GWL and BC impact, revealing a potential substantial decrease in LS by 2040. 
This projection emphasizes the effectiveness of strategic urban and environmental policy interventions. The 
model performances, indicated by coefficients of determination R2 (0.90 for XGBR, 0.84 for LSTM), root-mean- 
squared error RMSE (0.37 for XGBR, 0.50 for LSTM), and mean-absolute-error MAE (0.34 for XGBR, 0.67 for 
LSTM), confirm their reliability. This research sets a precedent for incorporating dynamic environmental factors 
and adapting to real-time data in future studies. Our approach facilitates proactive LS management through data- 
driven strategies, offering valuable insights for policymakers and laying the foundation for sustainable urban 
development and resource management practices.   

1. Introduction 

Land subsidence (LS) is regarded as one of the most serious natural 
hazards that can occur unexpectedly, resulting in significant property 
damage such as building foundations, transit networks, underground 
pipelines, drainage systems, and other infrastructures (Chaussard et al., 
2014; Pacheco-Martinez et al., 2013; Rahmati et al., 2019a; Van Niekerk 
and der Walt, 2006; Yin et al., 2016). It is a geohazard and visible in
dicator of land degradation caused by either natural or manmade factors 
such as poor land management, overexploitation of groundwater, and 
urban and agricultural development. The phenomenon mostly happens 
in many arid and semi-arid areas (Budhu and Adiyaman, 2010; Motagh 
et al., 2008). Moreover, it is frequently a source of concern since it 

reduces an aquifer’s storage capacity, resulting in geological breaches, 
fissures, damage to civil infrastructure, and increased flood risk. LS has 
emerged as a global threat, affecting numerous countries. Notable 
studies illustrating this include Wang et al. (2023) in China, Ebrahimy 
et al. (2020) in Iran, Corbeau et al. (2019) in Italy, Brown and Nicholls 
(2015) in Bangladesh, Chaussard et al. (2014) in Mexico and Galloway 
and Burbey (2011) in the United States of America. In recent decades, 
the prevalence of LS in some countries, like Iran, has skyrocketed 
(Motagh et al., 2008). Indiscriminate groundwater extraction for agri
cultural activities has been identified as a primary cause of LS in Iran 
(Foroughnia et al., 2019; Mohammady et al., 2019). Nonetheless, LS is a 
complex phenomenon influenced by a variety of factors beyond just 
groundwater extraction. Recognizing the widespread concern over LS, 
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recent scientific endeavors from various corners of the world, encom
passing the United States (Ellis et al., 2023), Japan (Nishi et al., 2023), 
China (Li et al., 2023; Shi et al., 2020a), Australia (Pan et al., 2022), 
France (Charpentier et al., 2022), Mexico (Fernández-Torres et al., 
2022), Argentina (Solorza et al., 2022), Indonesia (Hayati et al., 2022), 
India (Raju et al., 2022), and Iran (Rahmati et al., 2019b; Shahbazi et al., 
2022) have contributed significantly to our understanding of this global 
phenomenon. These studies, spanning diverse geographic contexts, 
collectively highlight LS as a pressing issue across different environ
ments and urban settings. 

This global perspective is exemplified in the case of Bangkok 
(Phien-wej et al., 2006). In this city, LS has presented a critical urban 
challenge for over 35 years, primarily driven by groundwater extraction. 
The persistence of this problem, despite efforts to mitigate it, un
derscores the multifaceted nature of LS, where human influences 
intersect with geological processes. Similarly, Abidin et al. (2011) 
document the varying rates of LS in Jakarta, Indonesia, attributing them 
to a combination of groundwater extraction, construction loads, and 
natural soil dynamics. This research highlights the complex and varied 
aspects of LS in rapidly developing urban areas and its ongoing impact 
on urban planning. Shirzaei et al. (2021) extend the scope of LS impact 
to coastal regions, identifying both natural and anthropogenic causes as 
significant contributors to relative sea-level rise and increased flooding 
hazards. Their review calls for the development of multi-objective pre
dictive models, integrating physical and socio-economic factors, to 
accurately project coastal subsidence patterns. In China, as Xue et al. 
(2005) report, LS is primarily driven by excessive groundwater with
drawal, with further contributions from oil and warm groundwater 
extraction, and neotectonic movements. The study highlights the 
persistent and expanding nature of LS in China, revealing the com
plexities of geological and human-induced factors in exacerbating this 
environmental issue. Bagheri-Gavkosh et al. (2021) provide a global 
perspective by examining 290 LS cases, noting that a significant portion 
occurs in coastal and river deltaic regions, largely due to groundwater 
extraction. This review emphasizes the critical role of spaceborne 
monitoring techniques in understanding LS dynamics. Complementing 
this global view, Marfai and King (2007) explore LS in Semarang, 
Indonesia, using Digital Elevation Models (DEMs) and Geographic In
formation System (GIS) raster operations. Their study, focused on 
monitoring and predicting subsidence, predicts that by 2020 an area of 
27.5 ha in Semarang will be 1.5–2.0 m below sea level, assuming a linear 
continuation of current subsidence rates without any mitigative action. 
This finding highlights the utility of DEMs and GIS in assessing and 
forecasting LS, particularly in urban areas facing significant infra
structural challenges. These investigations have repeatedly demon
strated that, due to the widespread distribution of LS and its potentially 
disastrous effects on the economy and environment, there is an urgent 
need for LS sensitivity zone assessments and identification of the leading 
causes of LS. 

In China, the rapidly urbanizing regions, such as the Nansha district 
in Guangzhou, Guangdong Province, have caught the attention of re
searchers, urban planners, and policymakers. Initial studies into LS in 
the Guangdong province primarily revolved around natural causes, such 
as tectonic activities and sediment compaction. However, as urbaniza
tion increased, anthropogenic factors became more prevalent in dis
cussions about subsidence. Urban construction, especially the 
development of skyscrapers and underground infrastructure, has also 
been noted to contribute to the pressure on the land, leading to subsi
dence. In the past decade, the occurrence of land-surface sinking has 
given rise to geologically induced hazards that pose a significant risk to 
the safety and well-being of urban populations. These risks include 
building cracks, ground fissures, underground pipe bursts, and bridge 
sinks. In instances of this nature, the implementation of rapid LS 
monitoring and precise simulation techniques can enhance the effec
tiveness of prevention and conservation endeavors (Du et al., 2021; 
Zhou et al., 2020). Semi-theoretical models and empirical models have 

been utilized in LS simulation for a considerable period, as evidenced by 
their application in prior research (Guzy and Malinowska, 2020). Wol
kersdorfer and Thiem (1999) employed a hydrogeological model to 
simulate LS phenomena in Germany, while Tang et al. (2008) made 
predictions regarding LS in Shanghai through the utilization of a grey 
model. The findings of Deng et al. (2017) indicate that conventional 
approaches have been inadequate in addressing these issues. LS is a 
multifaceted geological phenomenon resulting from the convergence of 
various variables, rendering it a non-linear issue (Li et al., 2021). 

Recent statistics from the National Bureau of Statistics reveal that 
Guangdong Province’s, China, urban landscape, particularly in the Pearl 
River Delta (PRD) - encompassing dynamic cities like Guangzhou, Hong- 
Kong, Macao, Foshan, Shenzhen, and Dongguan - is undergoing a 
remarkable transformation. As these cities expand, the PRD region faces 
a significant decline in sediment accumulation, compounded by the 
presence of multiple layers of soft soil with suboptimal mechanical 
properties. This scenario, coupled with intensive human engineering 
activities and natural geological processes, has led to severe LS issues 
across the area. Current estimates suggest that LS affects approximately 
11,397 km2 in the PRD, manifesting in visible damages such as cracked 
roads, collapsing houses, and tilting grounds, with the economic toll 
ranging from tens of thousands to millions of dollars. This emerging 
challenge not only jeopardizes the safety of these burgeoning megacities 
but also poses a critical threat to the sustainable economic development 
of the region. Given these circumstances, there is a pressing need for a 
comprehensive risk assessment to preemptively address this issue. Our 
study plays a pivotal role in mapping the extent and intensity of LS in the 
PRD basin, providing invaluable insights into its present impact and 
potential future consequences. 

The advent of satellite technology, especially Interferometric Syn
thetic Aperture Radar (InSAR), has revolutionized the monitoring of LS. 
For instance, Hongdong et al. (2011) demonstrated the effectiveness of 
the Differential-InSAR (D-InSAR) technique in monitoring LS, particu
larly in Jiangsu province, China. Their findings establish a linear rela
tionship between subsidence rates and groundwater factors and also 
highlight the precision and advantages of D-InSAR in large-area defor
mation monitoring. Cigna and Tapete (2022), Hayati et al. (2022), 
Strozzi et al. (2001), Wang et al. (2023), and many other researchers 
have harnessed this technology to gain more accurate and expansive 
readings of land movement in urban areas such as the Nansha district. 
With spatial resolutions ranging from 5 × 20 m for Sentinel 1 to 2 × 3.3 
m for TerraSAR-X, remote sensing technology derived from InSAR pro
vides a more efficient and less expensive method of obtaining informa
tion (Bai et al., 2016). Indeed, InSAR determines the satellite-Earth 
distance by measuring the phase difference between two or more im
ages. Numerous studies, including those by Galloway and Burbey 
(2011), Golian et al. (2021), and Othman and Abotalib (2019), have 
effectively combined INSAR methods with machine learning (ML) 
techniques to enhance our understanding of LS (Deng et al., 2017; 
Rahmati et al., 2019a, 2019b; Wang et al., 2023). While the use of a 
single dependent variable is commonplace, the use of several indepen
dent variables in ML is much less common. 

Nowadays, ML has gained prominence as a cutting-edge methodol
ogy for addressing nonlinear issues. It has emerged as a promising 
avenue for studying the simulation and prediction of LS (Ghorbani et al., 
2022; Li et al., 2021). For instance, Zhu et al. (2015) employed a Deep 
Neural Network (DNN) in conjunction with a Genetic Algorithm (GA) to 
model the land surface of Beijing. The findings of the study indicate that 
the DNN-GA model has the potential to effectively replicate LS. The 
model demonstrated an average absolute inaccuracy of 32 mm when 
comparing the simulated values to the actual values. In addition, Zhou 
et al. (2019) employed the Gradient Boosted Decision Tree (GBT) 
methodology to assess the relative significance of several factors in the 
occurrence of LS within the eastern region of the Beijing Plain. The study 
conducted by the researchers found that the primary determinants 
influencing the rate of LS are the groundwater level and the thickness of 
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compressible layers. The model achieved a level of accuracy of 0.74. 
Moreover, Shi et al. (2020b) employed a Long Short-Term Memory 
(LSTM) model to simulate the temporal fluctuations in LS between the 
years 2011 and 2015. The study revealed that the LSTM model exhibited 
favorable performance in cases of little subsidence as indicated by an 
average root mean squared error of 10.85 mm/a. 

Despite advancements in LS research, there remains a notable gap in 
the application of more sophisticated, data-driven methods capable of 
capturing the multifaceted and dynamic aspects of LS in urban envi
ronments. While studies have utilized ML techniques, such as DNN and 
GBT, in LS modeling (Zhu et al., 2015; Zhou et al., 2019), the exploration 
of more advanced ML methodologies like LSTM and eXtreme Gradient 
Boosting Regressor (XGBR) in urban LS forecasting is still in its nascent 
stages. Moreover, previous research has often focused on a limited set of 
variables or used single-model approaches, which may not fully 
encapsulate the intricacies of LS phenomena (Shi et al., 2020b). Our 
study seeks to fill this research void by leveraging both LSTM and XGBR 
models, thus providing a more holistic analysis that integrates a broader 
spectrum of variables and harnesses the collective strengths of these 
models. In this context, our research pioneers the use of LSTM and XGBR 
methodologies for LS modeling in urban areas, particularly focusing on 
future risk prevention. The primary objectives of this study are twofold: 
firstly, to estimate the rate of LS change utilizing data from InSAR, ge
ology, and boreholes, thereby unraveling the key variables influencing 
LS; and secondly, to assess the efficacy of LSTM and XGBR models in 
generating susceptibility zoning maps for the years 2024, 2030, 2040, 
and 2060. We introduce robust modeling strategies incorporating the 
delta-rate (Δr) concept, a novel approach in LS simulation. The dual 
application of LSTM and XGBR models addresses the limitations 
inherent in single-model frameworks when dealing with complex sce
narios (Gelete, 2023). Furthermore, we conduct a Taylor analysis to 
evaluate the predictive performance of each model individually. By 
forecasting LS-prone areas, our study aims to mitigate the impacts of LS 
development, enabling the delineation of LS-risk zones, recommenda
tion of effective control measures, and formulation of strategies for 

disaster prevention, mitigation, and informed land use planning. 

2. Study area and materials 

In this section, we delve into the survey area and the materials used 
for our study. Focusing on the Nansha district, a rapidly urbanizing area 
within the dynamic Pearl River Delta (PRD) region, we explore various 
factors contributing to land subsidence (LS). Our materials encompass a 
variety of data that plays a crucial role in painting a comprehensive 
picture of the subsidence dynamics in this densely populated and 
industrially significant area. 

2.1. Survey area 

Nansha district is located at the southernmost tip of Guangzhou City 
along the west bank of the PRD Waterway and spans from 113◦16′50″ to 
113◦43′15″ East longitude and 22◦31′14″ to 22◦55′28″ North latitude 
(Fig. 1). The district serves as the confluence point of the Xijiang, Bei
jiang, and Dongjiang rivers and covers a total area of approximately 803 
square kilometers. The geological strata in Nansha are relatively com
plete, extending from the Sinian to the Quaternary period, except for the 
Silurian. This includes well-represented Paleogene and Quaternary for
mations, ranging from the oldest to the youngest. The Paleogene consists 
of the Xinzhuang formation, which occurs in some parts of the eastern 
and western parts of the Nansha District, with a small distribution area. 
The Quaternary strata are the most widely distributed and are spread 
over a large area in the delta plain, covering an area of 9814.1 km2, 
accounting for 72.9% of the total area of the PRD. The lithology is 
mainly characterized by soft soil deposition such as brown-red clay and 
sandy clay (Shiling Formation), yellowish gravel, medium coarse sand, 
spotted clay (Xiashi Formation), grey-white, brown-red gravel, gravel, 
and gravelly pebbles (Baini Formation). 

In the Nansha area, hydrogeological conditions dictate the division 
of groundwater into two main aquifer layers: unconfined and confined. 
The unconfined aquifer, situated closer to the surface, is readily 

Fig. 1. Nansha district geographical location. The satellite map includes hydrogeological, engineering drillings with the location of three control points (CP1507, CP 
2513, CP3204). 
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replenished by rainfall and river water. However, its water is saline and 
not suitable for consumption. In contrast, the confined aquifer, trapped 
beneath less permeable layers like clay, is divided into two categories: 
the shallow confined aquifer at 25–100 m, and the deeper one ranging 
from 100 to 180 m. 

This subterranean landscape, while rich in its complexity, faces 
challenges brought on by the broader trends of the PRD. Here, rapid 
urban development coupled with excessive groundwater extraction has 
become a primary contributor to LS. This phenomenon is especially 
pronounced in urban sectors of the PRD, including parts of Guangzhou, 
where accelerated urbanization has led to significant subsidence. The 
Nansha area, strategically situated within the PRD, displays a clear 
correlation between LS and the development of mega-infrastructures, 
especially near industrial zones. This suggests that urban expansion, 
not only in residential but also in industrial domains, plays a crucial role 
in exacerbating subsidence. Moreover, the impact of urbanization in 
Nansha extends beyond surface developments; it involves substantial 
groundwater extraction to support the growing population and indus
trial activities. This extraction leads to a decrease in groundwater levels, 
causing soil compaction and subsidence. Additionally, the weight of the 
constructed infrastructure, including high-rise buildings and industrial 
facilities, contributes to the ground pressure, further exacerbating the 
subsidence. Furthermore, geotechnical investigations, including engi
neering and hydrogeological drillings as shown in Fig. 1, reveal that LS 
in Nansha has progressed through four distinct stages. These stages align 
with the phases of urban development and infrastructure build-up: 

- The beginning stage (2015–2016; ~125 mm): Initial signs of subsi
dence coinciding with early stages of rapid urban development and 
infrastructure construction.  

- The evolving stage (2016–2018; ~170 mm): Increased subsidence 
rate corresponding with accelerated construction activities and 
heightened groundwater extraction.  

- The expanding stage (2018–2020; ~222 mm): Further subsidence as 
urbanization spreads, with increased infrastructural load and 
continued groundwater use.  

- The fast-developing stage (2020–2022; ~320 mm): A sharp rise in 
subsidence rate, likely due to the cumulative effects of sustained 
groundwater extraction, infrastructural development, and possibly 
other environmental factors such as soil composition and underlying 
geological features. 

These stages highlight the interplay between human-induced 
changes (urbanization and groundwater extraction) and natural 
geological conditions, underscoring the complexity of LS in the Nansha 
district. The documentation suggests that without intervention and 
sustainable urban planning strategies, LS could continue to escalate, 
posing significant risks to the district’s infrastructure and overall envi
ronmental stability. 

2.2. Materials 

Our study utilizes an integrated dataset comprising Interferometric 
Synthetic Aperture Radar (InSAR) data for LS measurement, com
plemented by comprehensive geological and drilling data. The drilling 
dataset includes detailed engineering analyses of soil properties, such as 
compaction and soft soil characteristics, alongside groundwater level 
data essential for constructing accurate stratigraphic layer maps. 

2.2.1. SAR image data 
The Sentinel-1 satellite of the European Space Agency’s Copernicus 

program (GMES) was used. It provides continuous images (day, night, 
and various weather) and consists of two satellites, Sentinel-1A and 
Sentinel-1B. The sensors carried by the two satellites are synthetic 
aperture radars (SAR), which are active microwave remote sensing 
satellites. The shortest revisit period of a single Sentinel-1 satellite is 12 

days. After the launch of Sentinel-1B, using the dual-satellite tandem 
flight method, the shortest revisit period is 6 days, which has good 
timeliness and reliability. Sentinel-1 carries a C-band synthetic aperture 
radar with a total of 213 scenes from June 15, 2015, to December 23, 
2022. The parameters of Sentinel-1 are shown in Table 1. The SAR data 
is cross-checked with the real data collected via the control points every 
year (Fig. 2). 

2.2.2. Geological data (Lith) 
The geological data includes information on the geological systems 

that compose the region of Guangzhou, grouped into distinct 
compressible layers. The explicit lithology map was missing, and 
geological periods were used instead. Eight categories were retained to 
constitute our geological features (Lith), such as the Tertiary, the 
Cretaceous, the Jurassic, the Triassic, the Permian, the Carboniferous, 
the Devonian, and the Silurian systems (Fig. 3a). These data were ob
tained from the Guangdong Geological Bureau and do not change over 
time. 

2.2.3. Filled soil thickness (FSt) and sand layer distributions (SLd) 
Engineering and hydrogeological drilling are both types of drilling 

data collected in the Nansha district. They play a foundational role in 
ensuring that human activities, from construction to water extraction, 
are conducted safely, efficiently, and with minimal environmental 
impact. Engineering drilling, in particular, plays a pivotal role in 
assessing the subsurface ground conditions, which is fundamental to the 
design and construction of robust structures like buildings, bridges, 
tunnels, and dams. Data on filled soil thickness (FSt) and sand layer 
distributions (SLd) were meticulously gathered from these engineering 
drillings across different periods (Fig. 3b and c). Indeed, FSt and SLd are 
crucial because different soils can cause differential settlement if not 
adequately addressed. In addition, the distribution of soils determines 
the type of foundation needed for a structure; while sandy or gravely 
soils might support shallow foundations, clay or silty soils might 
necessitate the use of deep foundations like pilings. 

2.2.4. Building concentration (BC) 
In the Nansha district, building concentrations (BC) are derived from 

comprehensive civil engineering data on structures. This is pivotal for 
our analysis, enabling a thorough exploration of the relationship be
tween urban infrastructure density and LS in this densely populated 
area. The data, sourced from the Guangdong Geological Bureau, com
prises a detailed classification of high-concentration zones of large 
buildings, covering the period from 2015 to 2022. The level of infra
structure is classified into three groups based on their height. The first 
class is composed of (C) low-rise buildings ranging from 3 to 10 stories, 
including detached homes, townhouses, small commercial buildings, 
residential apartments, offices, and mixed-use buildings. The second 
category (B) is composed of medium-rise buildings ranging from 10 to 
40 stories, and the third class (A) is skyscrapers, supertall, and mega-tall 
buildings that exceed 40 stories (Fig. 3d). 

2.2.5. Groundwater levels (GWL) 
Hydrogeological drillings provide data on the presence, depth, 

quantity, and quality of groundwater. This information is vital for water 

Table 1 
Parameters of Sentinel-1.  

Parameter Sentinel-1A Sentinel-1B 

Beam modes Interferometric Wide (IW) Extra-Wide (EW) 
Wavelength 5.6 cm 5.6 
Band C C 
Incidence angle 29◦–46◦ 29◦–46◦

Repeat observations periods 12 6 
Number of images 213 213 
Data ranges June 15, 2015 December 23, 2022  
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supply planning, especially in regions where groundwater is a primary 
source of potable water. The data collected are groundwater levels from 
a map resulting from the combination of all drillings collected in 
Guangdong Province. Fig. 3e shows the GWL of Nanshan extracted from 
the hydrogeological data spatial distributions of 2015 and 2018. 

3. Methods 

The methodologies are structured into a short overview of the SAR 
data processing step and the machine learning-based ensemble 
techniques. 

3.1. PS/SBAS-Interferometric Synthetic Aperture Radar (InSAR) 

Due to atmospheric delay, orbital residuals, and decorrelation noise, 
InSAR technology can only measure surface deformation over two im
aging periods. It can’t measure deformation over time. This technology 
is also limited in terms of how it can be used. In recent years, to over
come the limitations, Tong et al. (2013) first proposed the Stacking 
technology, which reduces the impact of atmospheric delay by stacking 
multi-temporal differential interference phases. Subsequently, the 
mainstream time-series InSAR methods are invented and can be divided 
into two categories: the Permanent Scatterer Interferometry (PS-InSAR) 
based on a single image as the main image, and the interference point 
target analysis method developed on this basis. Another approach is the 
Small Baseline Subset (SBAS-InSAR) method, which utilizes a series of 
images with the main image as the focal point. This method emphasizes 
small baselines, employing techniques like Coherence Target (CT) and 
Temporal Coherence Point (TCP) for enhanced accuracy.  

• PS-InSAR 

The PS-InSAR largely overcame the influence of factors such as 
decoherence noise. The technique involves a series of specific processes, 
which can be outlined as follows:  

- Stage 1: Select one image as the public reference image and perform 
its registration to ensure alignment with other images.  

- Stage 2: Create a differential interferogram from any two aligned 
pictures. The phase value for any pair of photographs can be calcu
lated using the following equation: 

φ=φflat + φto + φdef + φatm + φn (1)  

where φflat is the earth’s curvature, φto represents terrain undulations, 
φdef signifies the deformation phase, φatm represents atmospheric inter
ference, and φn represents residual noise from the phase change. 

- Stage 3: Extract permanent scatter points, invert surface displace
ment using phase information from neighboring points, and use the 
deformation model to remove atmosphere, elevation, and orbital 
errors.  

• SBAS-InSAR 

Among the time series InSAR algorithms, the SBAS-InSAR (Tizzani 
et al., 2007) can better weaken the spatiotemporal decoherence caused 
by too long spatiotemporal baselines by selecting multiple main image 
interferences and can maximize the use of existing SAR data for 
high-speed accurate surface deformation inversion. The process of doing 
an SBAS-InSAR analysis involves the following steps:  

- Stage 1: Create a differential interferogram between all picture 
pairings.  

- Stage 2: Using least squares to compute the deformation phase as 

φ=
(
AT A

)− 1AT Δφ (2)  

in A− matrix, each row and column represent an interferogram and an 
image respectively. Δφ is a phase value combinatorial matrix on a dif
ferential interferogram. In the realm application case, it is the matrix 
ATA is assumed a singular form, hence resulting in an unlimited number 
of solutions. The Singular Value Decomposition technique is employed 
to determine the solutions that minimize the sum of squared residuals 

Fig. 2. Samples of LS in Nansha district. The area marked in red shows the most severe subsidence based on control point results. They are mainly concentrated in 
Dagang Town, Wanqinsha, PR Street Villages, the southern dock of Longxue Street, and near Dongyoung Village. a) Examples of three control points. The latter were 
used to check the rate of discrepancies in subsidence each year. b) The diagram of three control points indicates some evolution of LS from June 2015 to December 
2022. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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for the parameters.  

- Stage 3: involves the conversion of the deformation phase into a rate, 
followed by the determination of subsidence parameters for each 
period through the process of integration of these rates. 

3.2. Learning machines 

The learning machines are composed of eXtreme Gradient Boosting 
Regressor (XGBR) and Long Short-Term Memory (LSTM). 

3.2.1. Extreme Gradient Boosting Regressor (XGBR) 
XGBR is a variant of a gradient-boosting algorithm used for regres

sion tasks. It employs accurate approximations to construct an optimal 
prediction model (Friedman, 2001). Additionally, a notable benefit of 
XGBR is its efficiency in terms of computational speed. Additionally, it 
generates diverse training datasets through the process of random 
sampling. The idea behind the gradient boosting algorithm is to build a 
model in a stage-wise fashion by assembling a sequence of weak 
learners, typically decision trees, to create a strong learner that makes 
better predictions (Kouadio et al., 2022, 2023a). A simplified explana
tion of the mathematical operations involved in XGBR’s objective 
function is given as 

L(φ)=
∑

l(yi, ŷi ) +
∑

Ω(fi) (3)  

where L(φ) is the overall objective function, l(yi, ŷi) is the loss function 
that measures the difference between the ŷi and the actual yi values. 
Ω(fi) is the regularization term, which penalizes the complexity of the 
model (like the depth of threes). XGBR sequentially builds the model. At 
each step, it introduces a new tree fk that predicts the residuals or errors 
of the previous model and adds it to the ensemble as 

ŷi
(t) = ŷi

(t− 1) + fk(xi) (4)  

where ŷi
(t) is the prediction at step t and xi is the feature set for instance 

i. 

3.2.2. Long Short-Term Memory (LSTM) 
The LSTM architecture is designed to address the constraints of 

conventional recurrent neural networks in capturing and learning long- 
term relationships (Kratzert et al., 2018). LSTM is capable of effectively 
governing and retaining information throughout temporal intervals. 
This characteristic renders the model very suitable for acquiring 
knowledge in long-term memory and capturing the impacts of de
pendencies (Koch and Schneider, 2022). In addition, LSTM comprises a 
memory cell responsible for storing information, along with three cir
cular gates that regulate the flow of information within the LSTM. Refer 

Fig. 3. Feature data. a) Geological, b) Filled Soil Thickness (FSt), c) Sand Layer Distribution (SLd), d) Building Concentration (BC) maps. The years of data collection 
for FSt and SLd are 2015 and 2018 for the first, and 2021 and 2022 for the second engineering work. e) Groundwater level (GWL) extracted from the whole 
Guangdong GWL map. The hydrogeological works were performed in 2015 and 2018. 
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to Appendix A1 for a complete mathematical explanation. 

3.3. Data processing 

The processing is divided into three distinct phases. Initially, we 
analyze SAR imagery to capture the primary data set. In the following, 
we focus on the extraction of groundwater level (GWL) data, a crucial 
step for understanding the influence of groundwater dynamics on LS. 
Lastly, we delve into the delta rate (Δr) strategy applied with sophisti
cated machine learning (ML) algorithms to interpret and further analyze 
the data. This structured approach allows for a comprehensive analysis, 
starting from the nuanced interpretation of SAR images to advanced 
machine processing techniques, ensuring thorough data extraction and 
insightful analysis. 

3.3.1. SAR procedure 
Two hundred twenty-five (213) scenes were used as SAR images 

collected from Sentinel 1- satellite from June 2015 to December 2022. 
PS-InSAR and SBAS-InSAR technologies were used to execute time- 
series InSAR surface deformation monitoring and processing opera
tions, respectively. The PS-InSAR was used to process 144 scenes of 
photos obtained between June 2015–November 2019, with the image 
taken on December 2018, acting as the master image. Four steps sum
marize the procedure of SAR image processing.  

- Data registration accuracy at any two separate time times met 
standards of within 1/8 cell by performing image registration for 144 
sets of photos.  

- The second step involved creating a differential interferogram using 
time-series interferometry on the registered images.  

- The third step was the use of the amplitude difference technique to 
obtain PS points.  

- Fourth, we used the deformation model to produce surface 
displacement data for the research area based on the information on 
permanent scatterer locations, minimizing errors associated with 
elevation, atmosphere, and orbit. 

For the remaining 66 images, land surface deformation was tracked 
using SBAS-InSAR’s time series captured between January 2019 and 
December 2022. Five hundred meters were used as the spatial baseline 
and 180 days as the temporal baseline during processing. A total of 45 
pairs of images with minor baseline interference were established. The 
study area’s land surface displacement data was acquired using the least 
squares approach and singular value decomposition. 

Using PS-InSAR and SBAS-InSAR monitoring findings, the cumula
tive subsidence data from June 2015 -to November 2019 was used as 
benchmarks for the deformation sequence to implement time-series 
fusion for the cumulative deformation variables of June 2015 to 
December 2022. 

3.3.2. GWL extraction procedure 
An aquifer map is drawn from hydrogeological drillings performed in 

the whole of Guangdong Province between June 2015 and December 
2018. The map is built from the information collected in each borehole 
derived from the two aquifers (confined and unconfined). Thus, the 
hydrogeological data was analyzed using Golden Software Surfer 25.1 
and then rasterized using ArcGIS Pro 1.2. The Nanshan GWL map is 
made by interpolating all the GWL data associated with each borehole 
from the province map (e.g., Fig. 3e). The semi-variogram ordinary 
Kriging interpolation model is used to make the map fit automatically. 
Next, the GWL contour lines of the two aquifers were created and 
transformed into a groundwater-level raster image. 

3.3.3. Delta-rate (Δr) strategy 
Data interpolation for time-series forecasting is necessary with the 

Nansha dataset. Indeed, all variables that compose the predictor are not 

sampled according to the period from 2015 to 2022. For instance, the 
drilling data are a sampling of 2015 and 2018 (Fig. 3), whereas the soil- 
filled and sand layer engineering works were conducted in 2015 and 
2021, and 2018 and 2022 (Fig. 3b and c), respectively. To fit all vari
ables at the same time scale (i.e., from 2015 to 2022), we used the delta 
rate (Δr) computation and applied it to all the data except the categor
ical feature Lith, which is expected to not vary across the time as 

Δr (ts)=
1
ts

(
Dobs(time 2) − Dobs(time 1)

time 2 − time 1

)

(5)  

where Dobs(time 2) and Dobs(time 1) are the data collected on dates 2 and 
1 respectively. ts is a flexible timestamp and can be converted into 
months, weeks, days, etc. For instance, the Δr of FSt collected in 2017 
and 2021 can be used to get the cumulative value of 2018, 2019, and 
2020 as 

Dobs(t+ 1)=Dobs(t) + Δr (6)  

where Dobs(t+1) and Dobs(t) are the observed data, we want to estimate 
at t + 1 from t-time respectively. This assumes that Δr is constant at all 
times by default. Finally, the predictors from 2015 to 2022 were con
structed with 60 m × 60 m pixels from 2015 to 2022. To ensure that we 
have enough data from time-series calibration and validation, data were 
weekly sampled (timestamp) using the same approach as Eqs. (5) and (6) 
applied to two consecutive year-scale data. For instance, the Δr of 
2021–2022 was divided into 53 weeks (ts = 53), where Δr is constantly 
applied to each decomposed pixel that composes the LS features map. 
Overall, 395 weekly timestamps were created from June 2015 to 
December 2022. Thus, the average LS progression for each week should 
be used for the forecasting. Indeed, knowing the Δr in advance for each 
feature should be easily utilized for preventing LS forecasting. Thus, if 
the detected feature is an influential factor for LS, the application of 
reduction rate τ into each Δr value should create a new feature value, 
Δrprev utilized for retraining and re-evaluating the new prevention 
forecasting as 

Δrprev = τ × Δr (7)  

where Δrprev is the new delta-rate computed for prevention; τ is the 
factor reduction for LS preventing the risk, and Δr is a delta-rate aver
aged value of the time. Note that the use of averaged Δr reduces the 
computation times applied to each pixel that constitutes the feature 
map. Indeed, the generated LS of a single map data for 60m × 60m pixels 
yields 274,967 samples which excessively consumes computation re
sources for training and validating multiple-variate times-series data. 

However, if the influential factor is a categorical feature (for 
instance, Lith), the adjusted value using the down-weighting in Eq. (7) 
might not necessarily reduce the importance of a feature. We, therefore, 
propose two distinct techniques applied to LSTM and XGBR to work 
around these issues. 

In LSTM, we implement the Lasso regression (L1 regularization) 
directly within an LSTM network to reduce the influence of a specific 
feature by adding a penalty equivalent to the absolute value of the 
magnitude of coefficients to the loss function L as 

L new =L original + τλ
∑

|w| (8) 

Here, λ is the regularization strength (λ is recommended to be as 
small as possible; e.g., λ = 10− 6), and 

∑
|w| is the sum of the absolute 

values of the weights in the networks. The new Loss L new can lead to 
some coefficients being shrunk to zero, effectively reducing the influ
ence of corresponding features. It is easier to implement since most deep 
learning frameworks, like TensorFlow(Martín et al., 2015) and PyTorch 
(Paszke et al., 2019) allow to add L1 regularization to the layers of a 
neural network, including LSTM. 

In XGBR, the depth of the tree can be controlled to limit the model’s 
complexity, indirectly affecting feature importance. Indeed, the depth of 
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a tree determines how many splits it makes before reaching a prediction. 
A shallower tree (with less depth) will generally have less capacity to fit 
complex patterns and therefore might rely less on features that 
contribute to these complex patterns. The new specification for the 
maximum depth of the tree (max Dnew) for risk prevention at the τ−
factor threshold is expressed as 

max Dnew = τ max Doriginal (9)  

3.3.4. Calibration and validation 
In the context of utilizing black box models for modeling purposes, it 

is imperative to normalize both the input and output data. This 
normalization process ensures that all variables are brought into a 
consistent range before being input into the models. This approach will 
guarantee equitable consideration of all data, mitigate the influence of 
dimensionality, and prevent the overshadowing of data with tiny values 
by those in the higher numerical range (Nourani et al., 2019; Rajaee 
et al., 2019). Furthermore, the process of data normalization serves to 
streamline numerical computations within the model, thereby 
enhancing the precision of the modeling outcomes and diminishing the 
duration needed to ascertain the local or global minimum. In the present 
study, the process of normalizing the data was executed by employing 
Eq. (10), which effectively rescaled the values within the range of 0–1 as 

Xn =(Xi − Xmin)/(Xmax − Xmin)
(10)  

where Xn,Xmax,Xi, and Xmin are used to denote the normalized, 
maximum, actual, and minimum values of the dataset, respectively. It is 
imperative to evaluate the precision of LS process simulation models 
throughout both the calibration and validation stages. 

XGBR and LSTM are known for their effectiveness in modeling 
complex, non-linear patterns in time-series data. However, forecasting 
tasks, especially for XGBR, necessitate the first transformation of the 
time series dataset into a supervised learning issue. In addition, the 
utilization of the walk-forward validation technique is necessary for 
assessing the model. This is because employing k-fold cross-validation 
for model evaluation would yield overly optimistic results. The splits 
of the data in k-fold cross-validation are done in a way that is similar to 
randomness. This makes sure that the training and test/validation 
datasets are chosen from any part of the data that hasn’t been used for 
training. To comprehend the significant LS predicting influential factors, 
the dataset was partitioned into two subsets: 70% and 30% for training 
and validation, respectively. However, when it comes to LS time-series 
data forecasting, this k-fold cross-validation may result in an excessive 
level of confidence in the model’s performance. This is because time- 
series data typically changes over time. For this reason, walk-forward 
validation usually involves training a model on a small part of the 
dataset and then checking how well it did in a later period that comes 
after the training set. In this study, the model is trained using historical 
Δr− data and subsequently evaluated using the most recent subset of 
data. By eliminating the optimistic bias, a more accurate assessment of 
performance can be obtained. Regarding the utilization of training, 
validation, and test datasets, it is imperative to note that the adjustment 
of model parameters will be only conducted using the training and 
validation datasets. Moreover, the evaluation of the model’s perfor
mance will be carried out by benchmarking against a test dataset that 
encompasses data that is temporally more advanced. In the walk- 
forward approach, we train on a small portion of the data and then 
test at a later time. Then we move on and repeat the procedure. As a 
result, we have many out-of-sample times and may combine the results 
over periods. The optimal configuration of hyperparameters for the 
models was determined through a process of trial and error, as illus
trated in Table 2. 

3.3.5. Model evaluation criteria 
As suggested by Nourani et al. (2019), it is best to use at least one 

statistical error metric and one goodness-of-fit measure when judging 
how well the models can predict the future. In this study, the accuracy of 
the proposed LSTM and XGBR was evaluated using mean absolute error 
(MAE), root-mean-square error (RMSE), and coefficient of determina
tion (R2). 

The MAE quantifies the discrepancy between expected and observed 
values, specifically by disregarding the impact of negative values given 
as 

MAE=
1
n

∑n

i=1
|yi − ŷi| with 0 ≤ MAE <∞ (11)  

where y is the observed data and ŷ is the predicted outcomes of the 
model of n− samples. A low MAE is indicative of a high level of accuracy 
in the predictions made by the model. 

The RMSE measures the error of a model in predicting quantitative 
and runs from 0 to positive infinity. An ideal model would yield a root 
RMSE value of 0. It is expressed as 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

with 0 ≤ RMSE<∞ (12) 

The coefficient of determination (R2) quantifies the extent of corre
lation or collinearity between the anticipated values and the actual 
values. 

R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − y)2

with 0 ≤ R2 < 1 (13)  

where y is the mean of the observed data. The range of the metric is from 
0 to 1, where higher values signify a stronger alignment between the 
model and the observed data. 

4. Results 

This section provides a thorough analysis of land subsidence (LS), its 
forecasting, and risk prevention strategies in Nansha District. We begin 
with an analysis of LS’s spatial and temporal patterns from 2015 to 
2022, followed by a focused study of single-point subsidence evolution 
during the same period. Further, we investigate the factors contributing 
to LS, simulate the subsidence process, and evaluate the performance of 
our analytical methods. A Taylor Diagram visually illustrates our 
model’s accuracy. Lastly, we propose strategies for LS prevention, of
fering comprehensive insights and contributing significantly to envi
ronmental and geotechnical research. 

4.1. SAR 

4.1.1. Analysis of spatial and temporal patterns of subsidence in Nansha 
District from 2015 to 2022 

The Nansha project calculated annual deformation findings (Fig. 4a). 
This scenario can be studied in seven categories. Thus, from 2015.06 to 
2015.12, Nansha has no deformation signal and a maximum cumulative 
settlement of − 21mm. The land and buildings were stable. Major de
formations around many Nansha district streets occurred during 
2015–2016, with the largest cumulative settlement reaching − 64mm. 

Table 2 
Hyperparameters for XGBR and LSTM.  

Model Tuning parameter models 

XGBR n-estimators = 1000, maximum depth = 27, learning rate = 0.1, loss =
squared error. 

LSTM Number of hidden units = 200, max epoch = 100; optimization = Adamax; 
dropout = 0.4; learning rate = 0.01  
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The southeast side showed the highest deformation from 2015.06 to 
2017.12, with a maximum cumulative settlement of − 128mm. From 
2015 to 2018, the maximum cumulative settlement in Nansha District 
was − 176mm, and from 2015 to 2019, it was − 225mm. Moreover, the 
deformation on the west side was noticeable from 2015.06 to 2020.12, 
with a maximum total settlement of − 263mm. However, the large-area 
deformation signals were found, in numerous communities from 
2015.06 to 2021.12 with the highest cumulative settlement reaching 
− 320mm. Finally, the greatest cumulative settlement was − 364mm 
from 2015.06 to 2022.12. 

4.1.2. Analysis of single-point subsidence evolution in Nansha from 
2015.06 to 2022.12 

The study examined subsidence evolution in Nansha at numerous 
representative deformation locations in areas with considerable cumu
lative deformation. The researchers then created time series deforma
tion graphs for each control point. 

Fig. 4b shows the deformation site distribution of control points P1, 
P2, and P3, with their temporal evolution. Point P1’s deformation rate 
remains stable over time. From 2015.06 to 2016.12, deformation in this 
area was minimal, then it began subsiding. Gradual stability in 2022.12 
led to a maximum settlement of − 254 mm. Over time, P2 tends to 
approach a condition of uniformity. The LS continues to evolve until the 
conclusion of 2022.12, displaying no discernible pattern of stabilization. 
Moreover, the maximum cumulative settlement attains a value of − 313 
mm. Besides, throughout the observed period from 2015.12 to 2016.12, 
there is a discernible, albeit modest, positive trajectory evident in the 
data points corresponding to P3. Subsequently, the object resumed its 
descent, gradually assuming a state of deformation that can be described 
as predominantly uniform. The settlement sum continued to increase 
without displaying any signs of stabilization until 2022.12. Moreover, 
the highest cumulative settlement reached a value in the vicinity of 
− 350 mm. 

Fig. 4. InSAR maps. a) Cumulated LS map from 2015 to 2022. The map is rasterized and set input from 60mx60m pixels. b) LS control points (P1, P2, P3) evolution 
with their temporal evolution. 
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4.2. Learning machines 

4.2.1. Factor analysis 
Fig. 5a illustrates the feature importance as derived from both the 

XGBR and Random Forest (RF) models (Ho, 1995). The inclusion of the 
RF model, known for its robustness and interpretability, serves as a 
comparative benchmark to validate and corroborate the influential 
factors identified by the XGBR model (Kouadio et al., 2023b). At a 
glance, GWL constitutes the most important feature, with the highest 
score suggesting that it has the greatest impact on the model’s pre
dictions, followed by BC. Besides, the feature contribution of RF differs 
from the XGBR model. Indeed, the building concentration BC represents 
the most significant feature, whereas the GWL comes in as the second 
most important feature. However, both models demonstrated that GWL 
and BC are the most influential factors and accumulate around 51% of 
importance. RF confirms the importance of GWL and BC as the main 
causes of the LS effect in the Nansha district. 

4.2.2. LS simulation  

• Forecast with delta rate (Δr)

Fig. 5b shows an LS predictive model in the Nansha district using the 

averaged Δr. It also assesses the impact of preventive measures. The 
actual measured subsidence rates up to the point labeled "Train End 
Date," which refers to the complete model training. Thus, from Δr, the 
figure shows two scenarios for each model: a forecast without preventive 
measures and a forecast with preventive measures (lines with circle 
markers). The preventive measures involve reducing the GWL and BC by 
80%. This reflects an attempt to mitigate subsidence by addressing its 
primary causes: groundwater extraction and the weight of dense urban 
infrastructure.  

• Model confidence 

The shaded areas around the forecast lines represent the 70–95% 
confidence intervals. This means there is a 70–95% probability that the 
actual subsidence rate will fall within these bounds. The confidence 
intervals widen over time, indicating increasing uncertainty in the 
predictions as we move further from the Train-End-Date. The actual 
subsidence rate appears to have been increasing, reaching closer to − 45 
mm/year at the Train-End-Date. Moreover, the predictions without 
preventive measures continue this trend, with subsidence rates expected 
to worsen over time. The forecasts with prevention, however, show a 
marked improvement, flattening out the subsidence rate’s downward 
trajectory. This suggests that reducing GWL and BC could significantly 

Fig. 5. Feature contribution during LS simulation. a) Feature importance evaluated using XGBR and Random Forest (RF). b) Forecast versus Actual using Δr strategy.  
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mitigate the rate of LS. Furthermore, there may be slight differences in 
the predictions of the XGBR and LSTM models. Indeed, XGBR might 
capture abrupt changes better, while LSTM might be better at capturing 
long-term dependencies.  

• Predicted Δ̂r applied to LS data 

Fig. 6a shows the XGBR and LSTM simulation thin 2060.12 using Δ̂r 
applied to each pixel that composes the cumulated LS from the Training- 
End-Date (2022.12). Here, XGBR shows a relatively moderate amount of 
subsidence predicted from 2015 to 2024 with most areas less than 250 
mm (Δr = − 65mm). Some hotspots exceed 250 mm. The LS pattern 
from cumulative 2015–2030 becomes more pronounced, with wider 
areas reaching beyond the 250 mm mark (Δr = − 105mm). The red 
areas from 2015 to 2040, indicate severe subsidence (exceeding 350 mm 
~ Δr = − 173mm). They are more extensive, suggesting a progressive 
worsening of the subsidence problem. This severity continues to grow, 
with several areas showing a predicted settlement of more than 450 mm 
from the cumulative at 2060 (Δr = − 254mm). The scale for settlement 
changes with each consecutive map, indicating the predictive model 
expects a gradual increase in the amount of subsidence as time goes on. 
In Fig. 6b, using LSTM, the LS of 2015–2024 is distributed similarly to 
the XGBR model, but the areas with the most significant subsidence 
seem slightly less extensive. Moreover, a similar trend is observed with 
the XGBR model. However, the red areas appear slightly less intense in 
2030 with Δr = − 137mm. From 2015 to 2040, the trend of increasing 
subsidence continues but seems slightly reduced in terms of intensity 
compared to the XGBR model. Like the XGBR model, the amount of 
subsidence appears to be increasing in 2060 (Δr= − 321mm) but the 
extent and intensity of the most affected areas are less than what is 
predicted by the XGBR model. 

Table 3 shows some of the main standout points of the two models, 
XGBR and LSTM. Furthermore, it is important to note that our data were 
interpolated using the Δr strategy (section 3.3.3) to fit LS week-time 
data; therefore, XGBR and LSTM predictions are subject to some un
certainties, and the true utility of these models would also depend on 
their validation against observed subsidence data. 

4.2.3. Performance evaluation 
Table 4 presents the performance metrics for two models, XGBR and 

LSTM, as applied to the LS simulation over the calibration, training, and 
validation/test. The coefficient of determination R2. of XGBR (0.89678) 
indicates a high level of explained variance in the training dataset. Its 
RMSE value, estimated at 0.378907, suggests that the average squared 
forecast error is moderate, indicating a reasonable level of prediction 
error. The MAE (0.34678) shows that the average magnitude of the er
rors in predictions is relatively low. The LSTM model shows a lower R2 

(0.849872) than the XGBR model, indicating a slightly lower fit to the 

Fig. 6. LS simulation of 2024, 2030, 2040, and 2060 using Δr. a) Simulation with XGBR. b) Simulation with LSTM. LSTM predicts severe subsidence compared to 
XGBR to 2060. 

Table 3 
Key comparison between XGBR and LSTM models for LS simulation.  

Key points Scientific observations 

Model agreement XGBR and LSTM seem to agree on the general pattern of 
subsidence, with certain areas consistently showing as hotspots 
of severe subsidence across all future time frames. 

Intensity 
differences 

LSTM model generally predicts more severe subsidence than 
the XGBR model. This could be due to differences in how the 
models weigh the input variables or the mathematical 
structure of the models themselves. 

Progressive 
worsening 

XGBR and LSTM show a worsening trend over time, suggesting 
that whatever factors are contributing to the subsidence (such 
as groundwater depletion, natural compaction, or other 
geotechnical factors) are expected to continue or intensify. 

Practical 
implications 

Depending on the confidence in each model, planners and 
engineers might consider the LSTM predictions as a "worst- 
case" scenario and the XGBR as a "best-case" or less severe 
scenario. This could help in risk management and in setting 
more conservative or aggressive mitigation strategies.  

Table 4 
Results of XGBR and LSTM models for LS simulation.  

Period Performance measure XGBR LSTM 

Calibration/Training R2 0.896780 0.849872 
RMSE 0.378907 0.675438 
MAE 0.346780 0.567890 

Validation/Test R2 0.902346 0.823678 
RMSE 0.305678 0.556891 
MAE 0.456780 0.672340  
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training data. However, its RMSE is considerably higher at 0.675438, 
which suggests that the predictions are less accurate on average 
compared to XGBR. Likewise, the MAE is 0.567890, which is higher than 
XGBR’s, indicating that the errors are larger on average. 

During the testing phase, the RMSE, MAE, and R2 are used to mea
sure the model’s performance against the normalized GWL. Fig. 7a 
shows that XGBR has a lower RMSE value of 0.305678, which means 
that XGBR’s predictions are pretty close to the real values. While the R2 

= 0.9023 (close to 1) indicates that the model explains a majority of the 
variability in the response variable. Its MAE of 0.4568 shows a good 
average prediction error validated by a satisfactory value. Fig. 7b shows 
the LSTM performance with an RMSE of 0.55689. Its R2 = 0.823678 is 
still a strong score, but it’s lower than XGBR, suggesting that LSTM 
doesn’t capture as much of the variability. In addition, the average 
prediction error is larger than in XGBR, indicating less precise pre
dictions on average with an MAE of 0.6723. Furthermore, the XGBR 
outperforms the LSTM model across all three performance metrics. The 
model shows improved performance from training to validation in terms 
of RMSE, which is a positive indicator of its generalization capabilities. 
The LSTM model’s performance metrics are worse on the validation set 
than on the training set, which is a small sign that it might be overfitting 
the training data (Table 4). 

4.2.4. Taylor diagram analysis 
The Taylor diagram (Fig. 7c) is a graphical summary of how closely a 

pattern (or set of patterns) matches observations. It is used to compare 
the skills of different models or to assess the performance of a model 
concerning observations based on the correlation coefficient and the 
standard deviation. The LSTM model’s normalized standard deviation is 
almost the same as the observed data. This means that the model’s 
predictions are quite variable, just like the observed data. It has a cor
relation with observed data that appears to be around 0.85, which 
suggests a very high degree of linear relationship between the model’s 
predictions and the observed data. Besides, the normalized standard 
deviation for the XGBR model is slightly lower than that of the observed 
data, suggesting that the model’s predictions are less variable than the 
observations. The correlation of the XGBR model with the observed data 
is slightly lower than that of the LSTM model, but still above 0.9, which 
is considered high and indicates a strong linear relationship. Both 
models exhibit high correlation coefficients with the observed data. 
XGBR is a little closer to the perfect correlation value of 1.0 than LSTM. 
This means that the predictions made by the XGBR model are more 
closely linked to the values that were observed. The data “observed” 
serves as a reference for the standard deviation, and both models are 
relatively close to this value, with XGBR almost identical and LSTM 
slightly lower. Both the correlation and standard deviation of XGBR and 
the observed LS pattern are a little closer to being in line with each other 

Fig. 7. Model evaluation. XGBR (a) and LSTM (b) performance metrics evaluation limited with 3000 samples. The plot is performed using the groundwater level 
normalized values (GWL). evaluation. c)Taylor diagram. 
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than they are with the LSTM model. Overall, both models do a great job, 
but the XGBR model seems to be a little more in line with what we saw in 
terms of the pattern and variability of LS. 

4.2.5. LS risk prevention 
Fig. 8 appears to offer a comparative analysis of LS forecasting be

tween two scenarios. Scenario A corresponds to where the influence of 
GWL and BC is reduced by 80% and B otherwise. In scenario A (red 
frame), XGBR indicates that, with an 80% reduction in the significance 
of GWL and BC, there is a noticeable decrease in the areas and intensity 
of LS at around − 111 mm. The purple outline presumably denotes areas 
most impacted by LS. Inside this outline, the coloration suggests less 
severe subsidence compared to scenario B "without reduction". Scenario 
A implies that mitigating the effects of groundwater extraction and 
regulating construction in areas prone to subsidence could significantly 
reduce the extent of future LS. 

Moreover, in scenario A, the prediction of LSTM displays a more 
widespread and intense subsidence pattern, indicated by larger and 
more vivid red areas within the purple outline. The maps suggest that if 
current trends in GWL and BC continue unchecked, the LS by 2040 will 
be more severe (Δr= − 226 mm) than what is predicted under scenario A 
(Δr = − 90mm). Comparing the real cumulated LS map from 2015 to 
2022 (Fig. 4a) with the predicted scenarios, Fig. 8 indicates that the 
regions most affected by subsidence are likely to continue experiencing 
similar problems in the future if no intervention occurs. The 80% 
reduction in scenario A presents a future where proactive measures to 
lower GWL and regulate BC result in a markedly reduced severity of the 
LS issue. This suggests a path forward for land management and policy 
to mitigate subsidence risks. The "Risk Prevention" indicates that the 

areas of greatest concern are effectively addressed when the impact of 
GWL and BC is reduced, underlining the potential benefits of such pre
ventive measures. Thus, the LS risk prevention map provides a strong 
argument for proactive resource management and urban planning 
policies. 

5. Discussion 

In this discussion, we critically examine the impact and limitations of 
the delta rate (Δr) approach in land subsidence (LS) prediction, while 
also highlighting its implications for the Nansha district. We first explore 
the effectiveness of the Δr approach, then address its constraints and the 
potential for future research to overcome these challenges. Finally, we 
discuss the practical significance of our findings for urban planning and 
policy-making, emphasizing the need for ongoing advancement in LS 
management. 

5.1. Impact of using Δr approach 

In recent times, numerous researchers have devised various meth
odologies to address the challenges associated with LS sinking. For 
instance, in a study conducted by Rahmati et al. (2019b), a comparison 
was made between four tree-based machine learning models for LS 
hazard modeling in the Hamadan plain of Iran. The authors of this study 
employ the RF algorithm which exhibits a low predictive error. Based on 
their analysis, they determine that groundwater withdrawal emerges as 
the most relevant element contributing to LS. In the year 2020, Zama
nirad et al. (2020) employed three machine learning models, namely 
boosted regression trees (BRTs), generalized additive model, and RF, in 

Fig. 8. LS risk prevention using XGBR and LSTM. The red frame is scenario A: the result applied when reducing the GWL and BC to − 80% Δr representativity in the 
data set. Scenario B is predicted LS in 2040 without applying any prevention. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 
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conjunction with four anthropological and geo-environmental pre
dictors. The objective was to generate a spatial prediction map for an 
area in the southern region of Iran that is susceptible to LS. The study 
determined that the generalized additive model had the highest level of 
effectiveness as a susceptibility model within the designated study re
gion. Based on the relative contribution test, it was determined that the 
primary predictive factor for LS occurrence is the decline of ground
water level, which accounts for 77.5% of the overall contribution. This 
quantitative analysis assesses the significance of several factors con
cerning LS. Moreover, Wang et al. (2023) propose a novel approach for 
simulating LS using a combination of Extremely Randomized Trees and 
the Monte Carlo algorithm from compressive layers. This approach en
ables the authors to do a quantitative analysis of the significance of 
various factors in the Beijing Plain. The researchers have provided evi
dence to support the notion that the groundwater level is the primary 
factor influencing land surface deformation, accounting for a significant 
proportion ranging from 67.6% to 81.8%. In addition to the aforemen
tioned good outcomes, it is important to consider the impact of 
groundwater level, drawdown, or extraction as a significant contrib
uting factor to LS in various regions. Our analysis further substantiated 
this claim. However, none of the aforementioned studies have attempted 
to utilize forecasting techniques for risk prevention. One contributing 
component to this situation is the limited availability of time scale data, 
as the collection of LS data and the acquisition of important variables 
data on an annual basis incur substantial expenditures. 

The delta rate (Δr) approach, as employed in this study, represents a 
significant advancement in LS prediction and risk management. This 
methodology allows for the collection of subsidence data at varying 
times, facilitating the forecasting of subsidence patterns years in 
advance and thereby enhancing risk prevention strategies. The strength 
of the Δr approach lies in its capacity to model LS with fewer data points 
while still capturing the essential dynamics of the phenomenon, a 
particularly crucial feature in contexts where continuous data collection 
is challenging or cost-prohibitive. By applying the Δr method with 
advanced machine learning models like XGBR and LSTM, which are 
adept at processing complex, non-linear relationships among various 
factors influencing LS, our study demonstrates that even limited data 
can yield reasonably accurate forecasts. This approach is invaluable in 
resource-limited settings and represents an innovative use of technology 
in environmental risk assessment. 

Moreover, the Δr approach is supported by feature importance and 
Taylor analyses. The former identifies key drivers as understood by 
different models, while the latter serves as a visual tool to confirm the 
high statistical agreement of both models with observed data, thereby 
bolstering confidence in their predictions. By simulating scenarios 
where the impact of factors like groundwater level (GWL) and building 
concentration (BC) is reduced, our study showcases the potential 
effectiveness of targeted interventions. This aspect of our research pro
vides practical insights for urban planners and policymakers, demon
strating how strategic actions could significantly alter the trajectory of 
LS in urban environments. 

In essence, the integration of the Δr approach with XGBR and LSTM 
models offers a robust framework for LS prediction, enhancing our 
ability to foresee and manage risks associated with urban LS. This 
methodological innovation contributes to more sustainable and resilient 
urban development, underscoring the potential effectiveness of reducing 
groundwater extraction and ensuring suitable construction practices. It 
offers a beneficial tool for decision-makers addressing LS concerns, 
paving the way for informed policy decisions and mitigation strategies. 

5.2. Limitation of Δr and future research 

While the Δr approach has demonstrated its effectiveness, it is 
crucial to acknowledge its inherent limitations, particularly the 
assumption that Δr remains constant over time in the absence of 
continuous data. This assumption may not always reflect the complex 

and dynamic nature of real-world scenarios, where environmental and 
anthropogenic factors can cause fluctuations in LS rates. Such an over
simplification could lead to discrepancies between predicted and actual 
LS patterns. In our study, we attempted to mitigate this limitation by 
incorporating a range of variables and scenarios into the XGBR and 
LSTM models, thereby enhancing the robustness of our analysis and 
providing a more nuanced understanding of LS risks. This methodo
logical approach, while it cannot entirely substitute for continuous, real- 
time data collection, offers a practical alternative in situations where the 
costs and logistics of extensive geoscience exploration are prohibitive. 
Furthermore, the predictive power of the models is strengthened by 
comparing their outputs with actual observed data, allowing for ongoing 
refinement and improvement of model accuracy. However, it’s impor
tant to consider the nature of the dataset and the specific domain 
knowledge that may influence the predictive performance of certain 
features in one model over another. Variations in how different algo
rithms process feature interactions and non-linear relationships can also 
impact the ranking of feature importance. These considerations high
light the importance of a multi-faceted approach to model development 
and validation. 

To address these challenges in future research, we recommend the 
development of more adaptive models that can account for temporal 
variations in Δr and integrate real-time data updates. Such advance
ments would enhance the predictive accuracy of LS forecasting models 
and provide a more reliable tool for urban planners and policymakers. 
Additionally, further exploration into the effects of various environ
mental and anthropogenic factors on LS, beyond the scope of our current 
dataset, would contribute to a deeper understanding of this complex 
phenomenon. 

5.3. Implications for Nansha district 

The findings of our study have profound implications for the Nansha 
district, a region grappling with the challenges of LS. Our analysis pin
points GWL and BC as the primary drivers of LS in this area, as evidenced 
by the data presented in Fig. 5a. This crucial insight offers a strategic 
pathway for local authorities and urban planners: by effectively man
aging GWL and reducing BC, there’s a potential to significantly curtail 
the subsidence rate. Such measures are not just theoretical projections 
but are grounded in robust statistical evidence, including a notable 80% 
targeted reduction in LS (− 80% (GWL & BC)). This ambitious target, 
backed by our models’ 70–95% confidence interval as depicted in 
Fig. 5b, provides a reliable foundation for policymakers to base their 
decisions upon. In practical terms, these findings equip urban planners 
and policymakers in Nansha with a powerful tool to forecast and miti
gate LS risks. Implementing informed land management strategies based 
on our model’s predictions could dramatically reduce LS-related dam
ages, safeguarding the district’s infrastructure and enhancing its overall 
sustainability and safety. This approach moves beyond conventional 
strategies, offering a data-driven path that not only anticipates future LS 
scenarios but also provides actionable insights for proactive urban 
development and risk management. The implications of this study, 
therefore, extend well beyond academic circles, offering tangible, 
actionable solutions for one of the most pressing urban challenges in the 
Nansha district. 

6. Conclusions 

This study marks a pivotal advancement in understanding and pre
dicting land subsidence (LS), harnessing the power of delta-rate time
stamp calculus alongside cutting-edge machine learning models such as 
the eXtreme Gradient Boosting Regressor (XGBR) and Long Short-Term 
Memory (LSTM). Our comprehensive analysis reveals the significant 
influence of groundwater level (GWL) and building concentration (BC) 
on LS, with feature importance analysis underscoring their predominant 
roles. The robustness of our models is further validated through a Taylor 
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diagram, demonstrating a high correlation with observed data and 
affirming their predictive reliability. In a scenario where proactive 
measures are implemented to reduce GWL and BC, our study projects a 
notable decrease in LS by 2040. This forward-looking insight is crucial 
for environmentalists, urban planners, and policymakers, illustrating 
the transformative impact of informed policy changes and strategic in
terventions on mitigating LS risks. Such foresight is not just a theoretical 
exercise but a practical roadmap for sustainable urban development and 
the preservation of both natural and built environments. 

As we reflect on the implications of our research, it becomes clear 
that the journey toward a deeper understanding and effective manage
ment of LS is ongoing. In this vein, we propose the following areas as 
critical pathways for future exploration: 

- Real-time data integration: Future research should focus on incor
porating real-time environmental data into LS models, enhancing 
their responsiveness and accuracy.  

- Interdisciplinary collaboration: Encouraging collaboration across 
various fields like geology, urban planning, and environmental sci
ence can lead to more holistic approaches to LS challenges. 

- Long-term socio-economic studies: Investigating the long-term im
pacts of LS on communities and economies will provide invaluable 
insights for policy formulation.  

- Practical application in urban Planning: Bridging the gap between 
theoretical models and their practical application in urban devel
opment strategies is essential for real-world impact. 

Our findings and these future directions offer a beacon of hope and 
guidance in the quest to tackle LS challenges. By continuing to innovate 
and expand our research horizons, we can pave the way for safer, more 
resilient urban landscapes, ensuring the well-being of communities and 
the integrity of our urban fabric for generations to come. 

CRediT authorship contribution statement 

Jianxin Liu: Writing – review & editing, Writing – original draft, 
Project administration, Investigation, Funding acquisition. Wenxiang 
Liu: Writing – original draft, Validation, Investigation, Data curation. 
Fabrice Blanchard Allechy: Writing – review & editing, Writing – 
original draft, Visualization, Methodology, Formal analysis. Zhiwen 
Zheng: Writing – original draft, Visualization, Resources, Formal anal
ysis, Data curation. Rong Liu: Writing – review & editing, Supervision, 
Resources, Investigation, Funding acquisition. Kouao Laurent Koua
dio: Writing – review & editing, Writing – original draft, Visualization, 
Validation, Software, Methodology, Formal analysis, Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

The authors express their gratitude to the Guangdong Provincial 
Geological Bureau for the hydrogeology and engineering geology data as 
well as the provision of ground subsidence level measurement data. The 
research is supported by the National Natural Science Foundation of 
China (grant nos. 42130810, 41774149, and 42374093).  

Appendix 

The Long Short-Term Memory (LSTM) model consists of a memory cell (Ct) that is responsible for storing information, as well as three circular 
gates that control the flow of information within the LSTM cell (Fig.A1). The initial gate, as proposed by Gers et al. (2000) is referred to as the forget 
gate to regulate the amount to which the cell state vector Ct− 1 will be disregarded. The input, forget, and output gates in the internal LSTM model cell 
are represented by i, f , and O, respectively. Furthermore, the variables ht and Ct are used to denote the hidden state and the cell state at a given time t, 
respectively. The equations presented by Kratzert et al. (2018) provide a mathematical representation of the various gate and cell states of the LSTM 
model as  

• Input gate 

it = σ(WiXi +Uiht− 1 + bi) (A.1)  

where it , σ,Wi,Xi,Ui,ht− 1, and bi represents the input gate vector (ranged between 0 and 1), sigmoidal function, weight connecting the input gate, 
weights from the input, output from the previous time step, and bias vector, respectively.  

• Forget gate 

ft = σ
(
Wf Xt +Uf ht− 1 + bf

)
(A.2)  

where ft ,Wf ,Uf , and bf are the outputs of a vector forget gate with a value between 0 and 1 and a weight forget gate with inputs, input weights, and a 
bias vector, respectively.  

• Output gate 

Ot = σ(W0Xt +U0ht− 1 + b0) (A.3)  

where Ot ,Wo,Uo, and bo are the outputs of a vector output gate with a value between 0 and 1 and a weight forget gate with inputs, input weights, and a 
bias vector, respectively.  

• Cell state 
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The possible update vector for the cell state is computed as follows using the last hidden state (ht− 1) and current input (xt): 

Ct = tanh(WcXt +Ucht− 1 + bc) (A.4)  

where Ct is the cell state at the previous time ranged between − 1 and 1. tanh indicates the hyperbolic tangent function. The cellular state (Ct), as 
determined by the outcome of Equation A.4 is subsequently revised as 

Ct = f ◦

t Ct− 1 + i◦t Ct (A.5) 

The computation of the new hidden state (ht) is achieved by integrating the outcomes of the output gate and the cell state. 

ht = tanh(Ct)Ot (A.6)  

Fig. A.1. Architecture of Long-Short-Term Memory (LSTM)  

References 

Abidin, H.Z., Andreas, H., Gumilar, I., Fukuda, Y., Pohan, Y.E., Deguchi, T., 2011. Land 
subsidence of Jakarta (Indonesia) and its relation with urban development. Nat. 
Hazards 59, 1753–1771. https://doi.org/10.1007/s11069-011-9866-9. 

Bagheri-Gavkosh, M., Hosseini, S.M., Ataie-Ashtiani, B., Sohani, Y., Ebrahimian, H., 
Morovat, F., Ashrafi, S., 2021. Land subsidence: a global challenge. Sci. Total 
Environ. 778 https://doi.org/10.1016/j.scitotenv.2021.146193. 

Bai, L., Jiang, L., Wang, H., Sun, Q., 2016. Spatiotemporal characterization of land 
subsidence and uplift (2009–2010) over wuhan in central China revealed by 
terrasar-X insar analysis. Rem. Sens. 8, 350. 

Brown, S., Nicholls, R.J., 2015. Subsidence and human influences in mega deltas: the 
case of the Ganges–Brahmaputra–Meghna. Sci. Total Environ. 527, 362–374. 

Budhu, M., Adiyaman, I.B., 2010. Mechanics of land subsidence due to groundwater 
pumping. Int. J. Numer. Anal. Methods GeoMech. 34, 1459–1478. 

Charpentier, A., James, M., Ali, H., 2022. Predicting drought and subsidence risks in 
France. Nat. Hazards Earth Syst. Sci. 22, 2401–2418. 

Chaussard, E., Wdowinski, S., Cabral-Cano, E., Amelung, F., 2014. Land subsidence in 
central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 140, 
94–106. 

Cigna, F., Tapete, D., 2022. Urban growth and land subsidence: multi-decadal 
investigation using human settlement data and satellite InSAR in Morelia, Mexico. 
Sci. Total Environ. 811, 152211 https://doi.org/10.1016/j.scitotenv.2021.152211. 

Corbeau, J., Gonzalez, O.L., Clouard, V., Rolandone, F., Leroy, S., Keir, D., Stuart, G., 
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