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ARTICLE INFO ABSTRACT

Handling editor: Jason Michael Evans Understanding and mitigating land subsidence (LS) is critical for sustainable urban planning and infrastructure
management. We introduce a comprehensive analysis of LS forecasting utilizing two advanced machine learning
models: the eXtreme Gradient Boosting Regressor (XGBR) and Long Short-Term Memory (LSTM). Our findings
highlight groundwater level (GWL) and building concentration (BC) as pivotal factors influencing LS. Through
the use of Taylor diagram, we demonstrate a strong correlation between both XGBR and LSTM models and the
subsidence data, affirming their predictive accuracy. Notably, we applied delta-rate (Ar) calculus to simulate a
scenario with an 80% reduction in GWL and BC impact, revealing a potential substantial decrease in LS by 2040.
This projection emphasizes the effectiveness of strategic urban and environmental policy interventions. The
model performances, indicated by coefficients of determination R? (0.90 for XGBR, 0.84 for LSTM), root-mean-
squared error RMSE (0.37 for XGBR, 0.50 for LSTM), and mean-absolute-error MAE (0.34 for XGBR, 0.67 for
LSTM), confirm their reliability. This research sets a precedent for incorporating dynamic environmental factors
and adapting to real-time data in future studies. Our approach facilitates proactive LS management through data-
driven strategies, offering valuable insights for policymakers and laying the foundation for sustainable urban
development and resource management practices.
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1. Introduction reduces an aquifer’s storage capacity, resulting in geological breaches,

fissures, damage to civil infrastructure, and increased flood risk. LS has

Land subsidence (LS) is regarded as one of the most serious natural
hazards that can occur unexpectedly, resulting in significant property
damage such as building foundations, transit networks, underground
pipelines, drainage systems, and other infrastructures (Chaussard et al.,
2014; Pacheco-Martinez et al., 2013; Rahmati et al., 2019a; Van Niekerk
and der Walt, 2006; Yin et al., 2016). It is a geohazard and visible in-
dicator of land degradation caused by either natural or manmade factors
such as poor land management, overexploitation of groundwater, and
urban and agricultural development. The phenomenon mostly happens
in many arid and semi-arid areas (Budhu and Adiyaman, 2010; Motagh
et al., 2008). Moreover, it is frequently a source of concern since it

emerged as a global threat, affecting numerous countries. Notable
studies illustrating this include Wang et al. (2023) in China, Ebrahimy
et al. (2020) in Iran, Corbeau et al. (2019) in Italy, Brown and Nicholls
(2015) in Bangladesh, Chaussard et al. (2014) in Mexico and Galloway
and Burbey (2011) in the United States of America. In recent decades,
the prevalence of LS in some countries, like Iran, has skyrocketed
(Motagh et al., 2008). Indiscriminate groundwater extraction for agri-
cultural activities has been identified as a primary cause of LS in Iran
(Foroughnia et al., 2019; Mohammady et al., 2019). Nonetheless, LS is a
complex phenomenon influenced by a variety of factors beyond just
groundwater extraction. Recognizing the widespread concern over LS,
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recent scientific endeavors from various corners of the world, encom-
passing the United States (Ellis et al., 2023), Japan (Nishi et al., 2023),
China (Li et al., 2023; Shi et al., 2020a), Australia (Pan et al., 2022),
France (Charpentier et al., 2022), Mexico (Fernandez-Torres et al.,
2022), Argentina (Solorza et al., 2022), Indonesia (Hayati et al., 2022),
India (Raju et al., 2022), and Iran (Rahmati et al., 2019b; Shahbazi et al.,
2022) have contributed significantly to our understanding of this global
phenomenon. These studies, spanning diverse geographic contexts,
collectively highlight LS as a pressing issue across different environ-
ments and urban settings.

This global perspective is exemplified in the case of Bangkok
(Phien-wej et al., 2006). In this city, LS has presented a critical urban
challenge for over 35 years, primarily driven by groundwater extraction.
The persistence of this problem, despite efforts to mitigate it, un-
derscores the multifaceted nature of LS, where human influences
intersect with geological processes. Similarly, Abidin et al. (2011)
document the varying rates of LS in Jakarta, Indonesia, attributing them
to a combination of groundwater extraction, construction loads, and
natural soil dynamics. This research highlights the complex and varied
aspects of LS in rapidly developing urban areas and its ongoing impact
on urban planning. Shirzaei et al. (2021) extend the scope of LS impact
to coastal regions, identifying both natural and anthropogenic causes as
significant contributors to relative sea-level rise and increased flooding
hazards. Their review calls for the development of multi-objective pre-
dictive models, integrating physical and socio-economic factors, to
accurately project coastal subsidence patterns. In China, as Xue et al.
(2005) report, LS is primarily driven by excessive groundwater with-
drawal, with further contributions from oil and warm groundwater
extraction, and neotectonic movements. The study highlights the
persistent and expanding nature of LS in China, revealing the com-
plexities of geological and human-induced factors in exacerbating this
environmental issue. Bagheri-Gavkosh et al. (2021) provide a global
perspective by examining 290 LS cases, noting that a significant portion
occurs in coastal and river deltaic regions, largely due to groundwater
extraction. This review emphasizes the critical role of spaceborne
monitoring techniques in understanding LS dynamics. Complementing
this global view, Marfai and King (2007) explore LS in Semarang,
Indonesia, using Digital Elevation Models (DEMs) and Geographic In-
formation System (GIS) raster operations. Their study, focused on
monitoring and predicting subsidence, predicts that by 2020 an area of
27.5 ha in Semarang will be 1.5-2.0 m below sea level, assuming a linear
continuation of current subsidence rates without any mitigative action.
This finding highlights the utility of DEMs and GIS in assessing and
forecasting LS, particularly in urban areas facing significant infra-
structural challenges. These investigations have repeatedly demon-
strated that, due to the widespread distribution of LS and its potentially
disastrous effects on the economy and environment, there is an urgent
need for LS sensitivity zone assessments and identification of the leading
causes of LS.

In China, the rapidly urbanizing regions, such as the Nansha district
in Guangzhou, Guangdong Province, have caught the attention of re-
searchers, urban planners, and policymakers. Initial studies into LS in
the Guangdong province primarily revolved around natural causes, such
as tectonic activities and sediment compaction. However, as urbaniza-
tion increased, anthropogenic factors became more prevalent in dis-
cussions about subsidence. Urban construction, especially the
development of skyscrapers and underground infrastructure, has also
been noted to contribute to the pressure on the land, leading to subsi-
dence. In the past decade, the occurrence of land-surface sinking has
given rise to geologically induced hazards that pose a significant risk to
the safety and well-being of urban populations. These risks include
building cracks, ground fissures, underground pipe bursts, and bridge
sinks. In instances of this nature, the implementation of rapid LS
monitoring and precise simulation techniques can enhance the effec-
tiveness of prevention and conservation endeavors (Du et al., 2021;
Zhou et al., 2020). Semi-theoretical models and empirical models have
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been utilized in LS simulation for a considerable period, as evidenced by
their application in prior research (Guzy and Malinowska, 2020). Wol-
kersdorfer and Thiem (1999) employed a hydrogeological model to
simulate LS phenomena in Germany, while Tang et al. (2008) made
predictions regarding LS in Shanghai through the utilization of a grey
model. The findings of Deng et al. (2017) indicate that conventional
approaches have been inadequate in addressing these issues. LS is a
multifaceted geological phenomenon resulting from the convergence of
various variables, rendering it a non-linear issue (Li et al., 2021).

Recent statistics from the National Bureau of Statistics reveal that
Guangdong Province’s, China, urban landscape, particularly in the Pearl
River Delta (PRD) - encompassing dynamic cities like Guangzhou, Hong-
Kong, Macao, Foshan, Shenzhen, and Dongguan - is undergoing a
remarkable transformation. As these cities expand, the PRD region faces
a significant decline in sediment accumulation, compounded by the
presence of multiple layers of soft soil with suboptimal mechanical
properties. This scenario, coupled with intensive human engineering
activities and natural geological processes, has led to severe LS issues
across the area. Current estimates suggest that LS affects approximately
11,397 km? in the PRD, manifesting in visible damages such as cracked
roads, collapsing houses, and tilting grounds, with the economic toll
ranging from tens of thousands to millions of dollars. This emerging
challenge not only jeopardizes the safety of these burgeoning megacities
but also poses a critical threat to the sustainable economic development
of the region. Given these circumstances, there is a pressing need for a
comprehensive risk assessment to preemptively address this issue. Our
study plays a pivotal role in mapping the extent and intensity of LS in the
PRD basin, providing invaluable insights into its present impact and
potential future consequences.

The advent of satellite technology, especially Interferometric Syn-
thetic Aperture Radar (InSAR), has revolutionized the monitoring of LS.
For instance, Hongdong et al. (2011) demonstrated the effectiveness of
the Differential-InSAR (D-InSAR) technique in monitoring LS, particu-
larly in Jiangsu province, China. Their findings establish a linear rela-
tionship between subsidence rates and groundwater factors and also
highlight the precision and advantages of D-InSAR in large-area defor-
mation monitoring. Cigna and Tapete (2022), Hayati et al. (2022),
Strozzi et al. (2001), Wang et al. (2023), and many other researchers
have harnessed this technology to gain more accurate and expansive
readings of land movement in urban areas such as the Nansha district.
With spatial resolutions ranging from 5 x 20 m for Sentinel 1 to 2 x 3.3
m for TerraSAR-X, remote sensing technology derived from InSAR pro-
vides a more efficient and less expensive method of obtaining informa-
tion (Bai et al., 2016). Indeed, InSAR determines the satellite-Earth
distance by measuring the phase difference between two or more im-
ages. Numerous studies, including those by Galloway and Burbey
(2011), Golian et al. (2021), and Othman and Abotalib (2019), have
effectively combined INSAR methods with machine learning (ML)
techniques to enhance our understanding of LS (Deng et al., 2017;
Rahmati et al., 2019a, 2019b; Wang et al., 2023). While the use of a
single dependent variable is commonplace, the use of several indepen-
dent variables in ML is much less common.

Nowadays, ML has gained prominence as a cutting-edge methodol-
ogy for addressing nonlinear issues. It has emerged as a promising
avenue for studying the simulation and prediction of LS (Ghorbani et al.,
2022; Li et al., 2021). For instance, Zhu et al. (2015) employed a Deep
Neural Network (DNN) in conjunction with a Genetic Algorithm (GA) to
model the land surface of Beijing. The findings of the study indicate that
the DNN-GA model has the potential to effectively replicate LS. The
model demonstrated an average absolute inaccuracy of 32 mm when
comparing the simulated values to the actual values. In addition, Zhou
et al. (2019) employed the Gradient Boosted Decision Tree (GBT)
methodology to assess the relative significance of several factors in the
occurrence of LS within the eastern region of the Beijing Plain. The study
conducted by the researchers found that the primary determinants
influencing the rate of LS are the groundwater level and the thickness of
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compressible layers. The model achieved a level of accuracy of 0.74.
Moreover, Shi et al. (2020b) employed a Long Short-Term Memory
(LSTM) model to simulate the temporal fluctuations in LS between the
years 2011 and 2015. The study revealed that the LSTM model exhibited
favorable performance in cases of little subsidence as indicated by an
average root mean squared error of 10.85 mm/a.

Despite advancements in LS research, there remains a notable gap in
the application of more sophisticated, data-driven methods capable of
capturing the multifaceted and dynamic aspects of LS in urban envi-
ronments. While studies have utilized ML techniques, such as DNN and
GBT, in LS modeling (Zhu et al., 2015; Zhou et al., 2019), the exploration
of more advanced ML methodologies like LSTM and eXtreme Gradient
Boosting Regressor (XGBR) in urban LS forecasting is still in its nascent
stages. Moreover, previous research has often focused on a limited set of
variables or used single-model approaches, which may not fully
encapsulate the intricacies of LS phenomena (Shi et al., 2020b). Our
study seeks to fill this research void by leveraging both LSTM and XGBR
models, thus providing a more holistic analysis that integrates a broader
spectrum of variables and harnesses the collective strengths of these
models. In this context, our research pioneers the use of LSTM and XGBR
methodologies for LS modeling in urban areas, particularly focusing on
future risk prevention. The primary objectives of this study are twofold:
firstly, to estimate the rate of LS change utilizing data from InSAR, ge-
ology, and boreholes, thereby unraveling the key variables influencing
LS; and secondly, to assess the efficacy of LSTM and XGBR models in
generating susceptibility zoning maps for the years 2024, 2030, 2040,
and 2060. We introduce robust modeling strategies incorporating the
delta-rate (Ar) concept, a novel approach in LS simulation. The dual
application of LSTM and XGBR models addresses the limitations
inherent in single-model frameworks when dealing with complex sce-
narios (Gelete, 2023). Furthermore, we conduct a Taylor analysis to
evaluate the predictive performance of each model individually. By
forecasting LS-prone areas, our study aims to mitigate the impacts of LS
development, enabling the delineation of LS-risk zones, recommenda-
tion of effective control measures, and formulation of strategies for
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disaster prevention, mitigation, and informed land use planning.
2. Study area and materials

In this section, we delve into the survey area and the materials used
for our study. Focusing on the Nansha district, a rapidly urbanizing area
within the dynamic Pearl River Delta (PRD) region, we explore various
factors contributing to land subsidence (LS). Our materials encompass a
variety of data that plays a crucial role in painting a comprehensive
picture of the subsidence dynamics in this densely populated and
industrially significant area.

2.1. Survey area

Nansha district is located at the southernmost tip of Guangzhou City
along the west bank of the PRD Waterway and spans from 113°16'50" to
113°43'15" East longitude and 22°31'14" to 22°55'28" North latitude
(Fig. 1). The district serves as the confluence point of the Xijiang, Bei-
jiang, and Dongjiang rivers and covers a total area of approximately 803
square kilometers. The geological strata in Nansha are relatively com-
plete, extending from the Sinian to the Quaternary period, except for the
Silurian. This includes well-represented Paleogene and Quaternary for-
mations, ranging from the oldest to the youngest. The Paleogene consists
of the Xinzhuang formation, which occurs in some parts of the eastern
and western parts of the Nansha District, with a small distribution area.
The Quaternary strata are the most widely distributed and are spread
over a large area in the delta plain, covering an area of 9814.1 km2,
accounting for 72.9% of the total area of the PRD. The lithology is
mainly characterized by soft soil deposition such as brown-red clay and
sandy clay (Shiling Formation), yellowish gravel, medium coarse sand,
spotted clay (Xiashi Formation), grey-white, brown-red gravel, gravel,
and gravelly pebbles (Baini Formation).

In the Nansha area, hydrogeological conditions dictate the division
of groundwater into two main aquifer layers: unconfined and confined.
The unconfined aquifer, situated closer to the surface, is readily
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replenished by rainfall and river water. However, its water is saline and
not suitable for consumption. In contrast, the confined aquifer, trapped
beneath less permeable layers like clay, is divided into two categories:
the shallow confined aquifer at 25-100 m, and the deeper one ranging
from 100 to 180 m.

This subterranean landscape, while rich in its complexity, faces
challenges brought on by the broader trends of the PRD. Here, rapid
urban development coupled with excessive groundwater extraction has
become a primary contributor to LS. This phenomenon is especially
pronounced in urban sectors of the PRD, including parts of Guangzhou,
where accelerated urbanization has led to significant subsidence. The
Nansha area, strategically situated within the PRD, displays a clear
correlation between LS and the development of mega-infrastructures,
especially near industrial zones. This suggests that urban expansion,
not only in residential but also in industrial domains, plays a crucial role
in exacerbating subsidence. Moreover, the impact of urbanization in
Nansha extends beyond surface developments; it involves substantial
groundwater extraction to support the growing population and indus-
trial activities. This extraction leads to a decrease in groundwater levels,
causing soil compaction and subsidence. Additionally, the weight of the
constructed infrastructure, including high-rise buildings and industrial
facilities, contributes to the ground pressure, further exacerbating the
subsidence. Furthermore, geotechnical investigations, including engi-
neering and hydrogeological drillings as shown in Fig. 1, reveal that LS
in Nansha has progressed through four distinct stages. These stages align
with the phases of urban development and infrastructure build-up:

- The beginning stage (2015-2016; ~125 mm): Initial signs of subsi-
dence coinciding with early stages of rapid urban development and
infrastructure construction.

The evolving stage (2016-2018; ~170 mm): Increased subsidence
rate corresponding with accelerated construction activities and
heightened groundwater extraction.

- The expanding stage (2018-2020; ~222 mm): Further subsidence as
urbanization spreads, with increased infrastructural load and
continued groundwater use.

The fast-developing stage (2020-2022; ~320 mm): A sharp rise in
subsidence rate, likely due to the cumulative effects of sustained
groundwater extraction, infrastructural development, and possibly
other environmental factors such as soil composition and underlying
geological features.

These stages highlight the interplay between human-induced
changes (urbanization and groundwater extraction) and natural
geological conditions, underscoring the complexity of LS in the Nansha
district. The documentation suggests that without intervention and
sustainable urban planning strategies, LS could continue to escalate,
posing significant risks to the district’s infrastructure and overall envi-
ronmental stability.

2.2. Materials

Our study utilizes an integrated dataset comprising Interferometric
Synthetic Aperture Radar (InSAR) data for LS measurement, com-
plemented by comprehensive geological and drilling data. The drilling
dataset includes detailed engineering analyses of soil properties, such as
compaction and soft soil characteristics, alongside groundwater level
data essential for constructing accurate stratigraphic layer maps.

2.2.1. SAR image data

The Sentinel-1 satellite of the European Space Agency’s Copernicus
program (GMES) was used. It provides continuous images (day, night,
and various weather) and consists of two satellites, Sentinel-1A and
Sentinel-1B. The sensors carried by the two satellites are synthetic
aperture radars (SAR), which are active microwave remote sensing
satellites. The shortest revisit period of a single Sentinel-1 satellite is 12
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days. After the launch of Sentinel-1B, using the dual-satellite tandem
flight method, the shortest revisit period is 6 days, which has good
timeliness and reliability. Sentinel-1 carries a C-band synthetic aperture
radar with a total of 213 scenes from June 15, 2015, to December 23,
2022. The parameters of Sentinel-1 are shown in Table 1. The SAR data
is cross-checked with the real data collected via the control points every
year (Fig. 2).

2.2.2. Geological data (Lith)

The geological data includes information on the geological systems
that compose the region of Guangzhou, grouped into distinct
compressible layers. The explicit lithology map was missing, and
geological periods were used instead. Eight categories were retained to
constitute our geological features (Lith), such as the Tertiary, the
Cretaceous, the Jurassic, the Triassic, the Permian, the Carboniferous,
the Devonian, and the Silurian systems (Fig. 3a). These data were ob-
tained from the Guangdong Geological Bureau and do not change over
time.

2.2.3. Filled soil thickness (FSt) and sand layer distributions (SLd)

Engineering and hydrogeological drilling are both types of drilling
data collected in the Nansha district. They play a foundational role in
ensuring that human activities, from construction to water extraction,
are conducted safely, efficiently, and with minimal environmental
impact. Engineering drilling, in particular, plays a pivotal role in
assessing the subsurface ground conditions, which is fundamental to the
design and construction of robust structures like buildings, bridges,
tunnels, and dams. Data on filled soil thickness (FSt) and sand layer
distributions (SLd) were meticulously gathered from these engineering
drillings across different periods (Fig. 3b and c). Indeed, FSt and SLd are
crucial because different soils can cause differential settlement if not
adequately addressed. In addition, the distribution of soils determines
the type of foundation needed for a structure; while sandy or gravely
soils might support shallow foundations, clay or silty soils might
necessitate the use of deep foundations like pilings.

2.2.4. Building concentration (BC)

In the Nansha district, building concentrations (BC) are derived from
comprehensive civil engineering data on structures. This is pivotal for
our analysis, enabling a thorough exploration of the relationship be-
tween urban infrastructure density and LS in this densely populated
area. The data, sourced from the Guangdong Geological Bureau, com-
prises a detailed classification of high-concentration zones of large
buildings, covering the period from 2015 to 2022. The level of infra-
structure is classified into three groups based on their height. The first
class is composed of (C) low-rise buildings ranging from 3 to 10 stories,
including detached homes, townhouses, small commercial buildings,
residential apartments, offices, and mixed-use buildings. The second
category (B) is composed of medium-rise buildings ranging from 10 to
40 stories, and the third class (A) is skyscrapers, supertall, and mega-tall
buildings that exceed 40 stories (Fig. 3d).

2.2.5. Groundwater levels (GWL)
Hydrogeological drillings provide data on the presence, depth,
quantity, and quality of groundwater. This information is vital for water

Table 1
Parameters of Sentinel-1.

Parameter Sentinel-1A Sentinel-1B

Beam modes Interferometric Wide (IW) Extra-Wide (EW)

Wavelength 5.6 cm 5.6
Band C C
Incidence angle 29°-46° 29°-46°
Repeat observations periods 12 6
Number of images 213 213

Data ranges June 15, 2015 December 23, 2022
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supply planning, especially in regions where groundwater is a primary
source of potable water. The data collected are groundwater levels from
a map resulting from the combination of all drillings collected in
Guangdong Province. Fig. 3e shows the GWL of Nanshan extracted from
the hydrogeological data spatial distributions of 2015 and 2018.

3. Methods

The methodologies are structured into a short overview of the SAR
data processing step and the machine learning-based ensemble
techniques.

3.1. PS/SBAS-Interferometric Synthetic Aperture Radar (InSAR)

Due to atmospheric delay, orbital residuals, and decorrelation noise,
InSAR technology can only measure surface deformation over two im-
aging periods. It can’t measure deformation over time. This technology
is also limited in terms of how it can be used. In recent years, to over-
come the limitations, Tong et al. (2013) first proposed the Stacking
technology, which reduces the impact of atmospheric delay by stacking
multi-temporal differential interference phases. Subsequently, the
mainstream time-series InSAR methods are invented and can be divided
into two categories: the Permanent Scatterer Interferometry (PS-InSAR)
based on a single image as the main image, and the interference point
target analysis method developed on this basis. Another approach is the
Small Baseline Subset (SBAS-InSAR) method, which utilizes a series of
images with the main image as the focal point. This method emphasizes
small baselines, employing techniques like Coherence Target (CT) and
Temporal Coherence Point (TCP) for enhanced accuracy.

e PS-InSAR
The PS-InSAR largely overcame the influence of factors such as

decoherence noise. The technique involves a series of specific processes,
which can be outlined as follows:

- Stage 1: Select one image as the public reference image and perform
its registration to ensure alignment with other images.

- Stage 2: Create a differential interferogram from any two aligned
pictures. The phase value for any pair of photographs can be calcu-
lated using the following equation:

O =P + Pro T Putep + P + P @

where ¢y, is the earth’s curvature, ¢,, represents terrain undulations,
@qer Signifies the deformation phase, ¢y, represents atmospheric inter-

ference, and ¢, represents residual noise from the phase change.

- Stage 3: Extract permanent scatter points, invert surface displace-
ment using phase information from neighboring points, and use the
deformation model to remove atmosphere, elevation, and orbital
errors.

e SBAS-InSAR

Among the time series InSAR algorithms, the SBAS-InSAR (Tizzani
et al., 2007) can better weaken the spatiotemporal decoherence caused
by too long spatiotemporal baselines by selecting multiple main image
interferences and can maximize the use of existing SAR data for
high-speed accurate surface deformation inversion. The process of doing
an SBAS-InSAR analysis involves the following steps:

- Stage 1: Create a differential interferogram between all picture
pairings.
- Stage 2: Using least squares to compute the deformation phase as

@=(ATA)"'ATAg )

in A— matrix, each row and column represent an interferogram and an
image respectively. Ag is a phase value combinatorial matrix on a dif-
ferential interferogram. In the realm application case, it is the matrix
ATA is assumed a singular form, hence resulting in an unlimited number
of solutions. The Singular Value Decomposition technique is employed
to determine the solutions that minimize the sum of squared residuals
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Fig. 3. Feature data. a) Geological, b) Filled Soil Thickness (FSt), ¢) Sand Layer Distribution (SLd), d) Building Concentration (BC) maps. The years of data collection
for FSt and SLd are 2015 and 2018 for the first, and 2021 and 2022 for the second engineering work. e) Groundwater level (GWL) extracted from the whole
Guangdong GWL map. The hydrogeological works were performed in 2015 and 2018.

for the parameters.

- Stage 3: involves the conversion of the deformation phase into a rate,
followed by the determination of subsidence parameters for each
period through the process of integration of these rates.

3.2. Learning machines

The learning machines are composed of eXtreme Gradient Boosting
Regressor (XGBR) and Long Short-Term Memory (LSTM).

3.2.1. Extreme Gradient Boosting Regressor (XGBR)

XGBR is a variant of a gradient-boosting algorithm used for regres-
sion tasks. It employs accurate approximations to construct an optimal
prediction model (Friedman, 2001). Additionally, a notable benefit of
XGBR is its efficiency in terms of computational speed. Additionally, it
generates diverse training datasets through the process of random
sampling. The idea behind the gradient boosting algorithm is to build a
model in a stage-wise fashion by assembling a sequence of weak
learners, typically decision trees, to create a strong learner that makes
better predictions (Kouadio et al., 2022, 2023a). A simplified explana-
tion of the mathematical operations involved in XGBR’s objective
function is given as

Lg)=Y_1y:.5) + >_Q(f) 3)

where L(g) is the overall objective function, I(y;, y;) is the loss function
that measures the difference between the y; and the actual y; values.
Q(f;) is the regularization term, which penalizes the complexity of the
model (like the depth of threes). XGBR sequentially builds the model. At
each step, it introduces a new tree f; that predicts the residuals or errors
of the previous model and adds it to the ensemble as

5O =50+ fiw) “)

where 7; is the prediction at step ¢ and x; is the feature set for instance
i

3.2.2. Long Short-Term Memory (LSTM)

The LSTM architecture is designed to address the constraints of
conventional recurrent neural networks in capturing and learning long-
term relationships (Kratzert et al., 2018). LSTM is capable of effectively
governing and retaining information throughout temporal intervals.
This characteristic renders the model very suitable for acquiring
knowledge in long-term memory and capturing the impacts of de-
pendencies (Koch and Schneider, 2022). In addition, LSTM comprises a
memory cell responsible for storing information, along with three cir-
cular gates that regulate the flow of information within the LSTM. Refer
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to Appendix Al for a complete mathematical explanation.
3.3. Data processing

The processing is divided into three distinct phases. Initially, we
analyze SAR imagery to capture the primary data set. In the following,
we focus on the extraction of groundwater level (GWL) data, a crucial
step for understanding the influence of groundwater dynamics on LS.
Lastly, we delve into the delta rate (Ar) strategy applied with sophisti-
cated machine learning (ML) algorithms to interpret and further analyze
the data. This structured approach allows for a comprehensive analysis,
starting from the nuanced interpretation of SAR images to advanced
machine processing techniques, ensuring thorough data extraction and
insightful analysis.

3.3.1. SAR procedure

Two hundred twenty-five (213) scenes were used as SAR images
collected from Sentinel 1- satellite from June 2015 to December 2022.
PS-InSAR and SBAS-InSAR technologies were used to execute time-
series InSAR surface deformation monitoring and processing opera-
tions, respectively. The PS-InSAR was used to process 144 scenes of
photos obtained between June 2015-November 2019, with the image
taken on December 2018, acting as the master image. Four steps sum-
marize the procedure of SAR image processing.

- Data registration accuracy at any two separate time times met
standards of within 1/8 cell by performing image registration for 144
sets of photos.

The second step involved creating a differential interferogram using
time-series interferometry on the registered images.

The third step was the use of the amplitude difference technique to
obtain PS points.

Fourth, we used the deformation model to produce surface
displacement data for the research area based on the information on
permanent scatterer locations, minimizing errors associated with
elevation, atmosphere, and orbit.

For the remaining 66 images, land surface deformation was tracked
using SBAS-InSAR’s time series captured between January 2019 and
December 2022. Five hundred meters were used as the spatial baseline
and 180 days as the temporal baseline during processing. A total of 45
pairs of images with minor baseline interference were established. The
study area’s land surface displacement data was acquired using the least
squares approach and singular value decomposition.

Using PS-InSAR and SBAS-InSAR monitoring findings, the cumula-
tive subsidence data from June 2015 -to November 2019 was used as
benchmarks for the deformation sequence to implement time-series
fusion for the cumulative deformation variables of June 2015 to
December 2022.

3.3.2. GWL extraction procedure

An aquifer map is drawn from hydrogeological drillings performed in
the whole of Guangdong Province between June 2015 and December
2018. The map is built from the information collected in each borehole
derived from the two aquifers (confined and unconfined). Thus, the
hydrogeological data was analyzed using Golden Software Surfer 25.1
and then rasterized using ArcGIS Pro 1.2. The Nanshan GWL map is
made by interpolating all the GWL data associated with each borehole
from the province map (e.g., Fig. 3e). The semi-variogram ordinary
Kriging interpolation model is used to make the map fit automatically.
Next, the GWL contour lines of the two aquifers were created and
transformed into a groundwater-level raster image.

3.3.3. Delta-rate (Ar) strategy
Data interpolation for time-series forecasting is necessary with the
Nansha dataset. Indeed, all variables that compose the predictor are not
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sampled according to the period from 2015 to 2022. For instance, the
drilling data are a sampling of 2015 and 2018 (Fig. 3), whereas the soil-
filled and sand layer engineering works were conducted in 2015 and
2021, and 2018 and 2022 (Fig. 3b and c), respectively. To fit all vari-
ables at the same time scale (i.e., from 2015 to 2022), we used the delta
rate (Ar) computation and applied it to all the data except the categor-
ical feature Lith, which is expected to not vary across the time as

1 (D,,,,x(time 2) — D, (time 1)>

Ar (ts) =—
r (1) ts time 2 — time 1

()

where Dy (time 2) and D,ps(time 1) are the data collected on dates 2 and
1 respectively. ts is a flexible timestamp and can be converted into
months, weeks, days, etc. For instance, the Ar of FSt collected in 2017
and 2021 can be used to get the cumulative value of 2018, 2019, and
2020 as

Do (t + 1) = Doy (1) + Ar )

where Dys(t+1) and Dgy(t) are the observed data, we want to estimate
at t + 1 from t-time respectively. This assumes that Ar is constant at all
times by default. Finally, the predictors from 2015 to 2022 were con-
structed with 60 m x 60 m pixels from 2015 to 2022. To ensure that we
have enough data from time-series calibration and validation, data were
weekly sampled (timestamp) using the same approach as Egs. (5) and (6)
applied to two consecutive year-scale data. For instance, the Ar of
2021-2022 was divided into 53 weeks (ts = 53), where Ar is constantly
applied to each decomposed pixel that composes the LS features map.
Overall, 395 weekly timestamps were created from June 2015 to
December 2022. Thus, the average LS progression for each week should
be used for the forecasting. Indeed, knowing the Ar in advance for each
feature should be easily utilized for preventing LS forecasting. Thus, if
the detected feature is an influential factor for LS, the application of
reduction rate 7 into each Ar value should create a new feature value,
Arprey utilized for retraining and re-evaluating the new prevention
forecasting as

Arpy =7 X Ar ™

where Arp, is the new delta-rate computed for prevention; 7 is the
factor reduction for LS preventing the risk, and Ar is a delta-rate aver-
aged value of the time. Note that the use of averaged Ar reduces the
computation times applied to each pixel that constitutes the feature
map. Indeed, the generated LS of a single map data for 60m x 60m pixels
yields 274,967 samples which excessively consumes computation re-
sources for training and validating multiple-variate times-series data.

However, if the influential factor is a categorical feature (for
instance, Lith), the adjusted value using the down-weighting in Eq. (7)
might not necessarily reduce the importance of a feature. We, therefore,
propose two distinct techniques applied to LSTM and XGBR to work
around these issues.

In LSTM, we implement the Lasso regression (L1 regularization)
directly within an LSTM network to reduce the influence of a specific
feature by adding a penalty equivalent to the absolute value of the
magnitude of coefficients to the loss function .~ as

L yew =L original + TA Z wl ®

Here, 1 is the regularization strength (1 is recommended to be as
small as possible; e.g., A = 107°), and Y |w| is the sum of the absolute
values of the weights in the networks. The new Loss -7, can lead to
some coefficients being shrunk to zero, effectively reducing the influ-
ence of corresponding features. It is easier to implement since most deep
learning frameworks, like TensorFlow(Martin et al., 2015) and PyTorch
(Paszke et al., 2019) allow to add L1 regularization to the layers of a
neural network, including LSTM.

In XGBR, the depth of the tree can be controlled to limit the model’s
complexity, indirectly affecting feature importance. Indeed, the depth of
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a tree determines how many splits it makes before reaching a prediction.
A shallower tree (with less depth) will generally have less capacity to fit
complex patterns and therefore might rely less on features that
contribute to these complex patterns. The new specification for the
maximum depth of the tree (max Dy,,) for risk prevention at the 7—
factor threshold is expressed as

max Dy, =7 max D,iginal )

3.3.4. Calibration and validation

In the context of utilizing black box models for modeling purposes, it
is imperative to normalize both the input and output data. This
normalization process ensures that all variables are brought into a
consistent range before being input into the models. This approach will
guarantee equitable consideration of all data, mitigate the influence of
dimensionality, and prevent the overshadowing of data with tiny values
by those in the higher numerical range (Nourani et al., 2019; Rajaee
et al., 2019). Furthermore, the process of data normalization serves to
streamline numerical computations within the model, thereby
enhancing the precision of the modeling outcomes and diminishing the
duration needed to ascertain the local or global minimum. In the present
study, the process of normalizing the data was executed by employing
Eq. (10), which effectively rescaled the values within the range of 0-1 as

X, = (Xi — Xonin )/( (10)

Xmu.\ - Xmin)
where Xp,Xmax,Xi;, and Xp;, are used to denote the normalized,
maximum, actual, and minimum values of the dataset, respectively. It is
imperative to evaluate the precision of LS process simulation models
throughout both the calibration and validation stages.

XGBR and LSTM are known for their effectiveness in modeling
complex, non-linear patterns in time-series data. However, forecasting
tasks, especially for XGBR, necessitate the first transformation of the
time series dataset into a supervised learning issue. In addition, the
utilization of the walk-forward validation technique is necessary for
assessing the model. This is because employing k-fold cross-validation
for model evaluation would yield overly optimistic results. The splits
of the data in k-fold cross-validation are done in a way that is similar to
randomness. This makes sure that the training and test/validation
datasets are chosen from any part of the data that hasn’t been used for
training. To comprehend the significant LS predicting influential factors,
the dataset was partitioned into two subsets: 70% and 30% for training
and validation, respectively. However, when it comes to LS time-series
data forecasting, this k-fold cross-validation may result in an excessive
level of confidence in the model’s performance. This is because time-
series data typically changes over time. For this reason, walk-forward
validation usually involves training a model on a small part of the
dataset and then checking how well it did in a later period that comes
after the training set. In this study, the model is trained using historical
Ar— data and subsequently evaluated using the most recent subset of
data. By eliminating the optimistic bias, a more accurate assessment of
performance can be obtained. Regarding the utilization of training,
validation, and test datasets, it is imperative to note that the adjustment
of model parameters will be only conducted using the training and
validation datasets. Moreover, the evaluation of the model’s perfor-
mance will be carried out by benchmarking against a test dataset that
encompasses data that is temporally more advanced. In the walk-
forward approach, we train on a small portion of the data and then
test at a later time. Then we move on and repeat the procedure. As a
result, we have many out-of-sample times and may combine the results
over periods. The optimal configuration of hyperparameters for the
models was determined through a process of trial and error, as illus-
trated in Table 2.

3.3.5. Model evaluation criteria
As suggested by Nourani et al. (2019), it is best to use at least one
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Table 2
Hyperparameters for XGBR and LSTM.

Model  Tuning parameter models

XGBR n-estimators = 1000, maximum depth = 27, learning rate = 0.1, loss =
squared error.

LSTM Number of hidden units = 200, max epoch = 100; optimization = Adamax;
dropout = 0.4; learning rate = 0.01

statistical error metric and one goodness-of-fit measure when judging
how well the models can predict the future. In this study, the accuracy of
the proposed LSTM and XGBR was evaluated using mean absolute error
(MAE), root-mean-square error (RMSE), and coefficient of determina-
tion (R2).

The MAE quantifies the discrepancy between expected and observed
values, specifically by disregarding the impact of negative values given
as

1 n
MAE=="|y; — 5i| with 0 < MAE < oo an
=

where y is the observed data and y is the predicted outcomes of the
model of n— samples. A low MAE is indicative of a high level of accuracy
in the predictions made by the model.

The RMSE measures the error of a model in predicting quantitative
and runs from O to positive infinity. An ideal model would yield a root
RMSE value of 0. It is expressed as

o
RMSE= |- " (y;—9:)" with0 < RMSE <o 12)

The coefficient of determination (R?) quantifies the extent of corre-
lation or collinearity between the anticipated values and the actual
values.

with0 < R* < 1 13)

where y is the mean of the observed data. The range of the metric is from
0 to 1, where higher values signify a stronger alignment between the
model and the observed data.

4. Results

This section provides a thorough analysis of land subsidence (LS), its
forecasting, and risk prevention strategies in Nansha District. We begin
with an analysis of LS’s spatial and temporal patterns from 2015 to
2022, followed by a focused study of single-point subsidence evolution
during the same period. Further, we investigate the factors contributing
to LS, simulate the subsidence process, and evaluate the performance of
our analytical methods. A Taylor Diagram visually illustrates our
model’s accuracy. Lastly, we propose strategies for LS prevention, of-
fering comprehensive insights and contributing significantly to envi-
ronmental and geotechnical research.

4.1. SAR

4.1.1. Analysis of spatial and temporal patterns of subsidence in Nansha
District from 2015 to 2022

The Nansha project calculated annual deformation findings (Fig. 4a).
This scenario can be studied in seven categories. Thus, from 2015.06 to
2015.12, Nansha has no deformation signal and a maximum cumulative
settlement of —21mm. The land and buildings were stable. Major de-
formations around many Nansha district streets occurred during
2015-2016, with the largest cumulative settlement reaching —64mm.
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Fig. 4. InSAR maps. a) Cumulated LS map from 2015 to 2022. The map is rasterized and set input from 60mx60m pixels. b) LS control points (P1, P2, P3) evolution

with their temporal evolution.

The southeast side showed the highest deformation from 2015.06 to
2017.12, with a maximum cumulative settlement of —128mm. From
2015 to 2018, the maximum cumulative settlement in Nansha District
was —176mm, and from 2015 to 2019, it was —225mm. Moreover, the
deformation on the west side was noticeable from 2015.06 to 2020.12,
with a maximum total settlement of —263mm. However, the large-area
deformation signals were found, in numerous communities from
2015.06 to 2021.12 with the highest cumulative settlement reaching
—320mm. Finally, the greatest cumulative settlement was —364mm
from 2015.06 to 2022.12.

4.1.2. Analysis of single-point subsidence evolution in Nansha from
2015.06 to 2022.12

The study examined subsidence evolution in Nansha at numerous
representative deformation locations in areas with considerable cumu-
lative deformation. The researchers then created time series deforma-
tion graphs for each control point.

Fig. 4b shows the deformation site distribution of control points P1,
P2, and P3, with their temporal evolution. Point P1’s deformation rate
remains stable over time. From 2015.06 to 2016.12, deformation in this
area was minimal, then it began subsiding. Gradual stability in 2022.12
led to a maximum settlement of —254 mm. Over time, P2 tends to
approach a condition of uniformity. The LS continues to evolve until the
conclusion of 2022.12, displaying no discernible pattern of stabilization.
Moreover, the maximum cumulative settlement attains a value of —313
mm. Besides, throughout the observed period from 2015.12 to 2016.12,
there is a discernible, albeit modest, positive trajectory evident in the
data points corresponding to P3. Subsequently, the object resumed its
descent, gradually assuming a state of deformation that can be described
as predominantly uniform. The settlement sum continued to increase
without displaying any signs of stabilization until 2022.12. Moreover,
the highest cumulative settlement reached a value in the vicinity of
—350 mm.
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4.2. Learning machines

4.2.1. Factor analysis

Fig. 5a illustrates the feature importance as derived from both the
XGBR and Random Forest (RF) models (Ho, 1995). The inclusion of the
RF model, known for its robustness and interpretability, serves as a
comparative benchmark to validate and corroborate the influential
factors identified by the XGBR model (Kouadio et al., 2023b). At a
glance, GWL constitutes the most important feature, with the highest
score suggesting that it has the greatest impact on the model’s pre-
dictions, followed by BC. Besides, the feature contribution of RF differs
from the XGBR model. Indeed, the building concentration BC represents
the most significant feature, whereas the GWL comes in as the second
most important feature. However, both models demonstrated that GWL
and BC are the most influential factors and accumulate around 51% of
importance. RF confirms the importance of GWL and BC as the main
causes of the LS effect in the Nansha district.

4.2.2. LS simulation
o Forecast with delta rate (Ar)

Fig. 5b shows an LS predictive model in the Nansha district using the

()

Groundwater Level (GWL)
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averaged Ar. It also assesses the impact of preventive measures. The
actual measured subsidence rates up to the point labeled "Train End
Date," which refers to the complete model training. Thus, from Ar, the
figure shows two scenarios for each model: a forecast without preventive
measures and a forecast with preventive measures (lines with circle
markers). The preventive measures involve reducing the GWL and BC by
80%. This reflects an attempt to mitigate subsidence by addressing its
primary causes: groundwater extraction and the weight of dense urban
infrastructure.

e Model confidence

The shaded areas around the forecast lines represent the 70-95%
confidence intervals. This means there is a 70-95% probability that the
actual subsidence rate will fall within these bounds. The confidence
intervals widen over time, indicating increasing uncertainty in the
predictions as we move further from the Train-End-Date. The actual
subsidence rate appears to have been increasing, reaching closer to —45
mm/year at the Train-End-Date. Moreover, the predictions without
preventive measures continue this trend, with subsidence rates expected
to worsen over time. The forecasts with prevention, however, show a
marked improvement, flattening out the subsidence rate’s downward
trajectory. This suggests that reducing GWL and BC could significantly
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mitigate the rate of LS. Furthermore, there may be slight differences in
the predictions of the XGBR and LSTM models. Indeed, XGBR might
capture abrupt changes better, while LSTM might be better at capturing
long-term dependencies.

e Predicted Ar applied to LS data

Fig. 6a shows the XGBR and LSTM simulation thin 2060.12 using Ar
applied to each pixel that composes the cumulated LS from the Training-
End-Date (2022.12). Here, XGBR shows a relatively moderate amount of
subsidence predicted from 2015 to 2024 with most areas less than 250
mm (Ar = — 65mm). Some hotspots exceed 250 mm. The LS pattern
from cumulative 2015-2030 becomes more pronounced, with wider
areas reaching beyond the 250 mm mark (Ar = — 105mm). The red
areas from 2015 to 2040, indicate severe subsidence (exceeding 350 mm
~ Ar = — 173mm). They are more extensive, suggesting a progressive
worsening of the subsidence problem. This severity continues to grow,
with several areas showing a predicted settlement of more than 450 mm
from the cumulative at 2060 (Ar = — 254mm). The scale for settlement
changes with each consecutive map, indicating the predictive model
expects a gradual increase in the amount of subsidence as time goes on.
In Fig. 6b, using LSTM, the LS of 2015-2024 is distributed similarly to
the XGBR model, but the areas with the most significant subsidence
seem slightly less extensive. Moreover, a similar trend is observed with
the XGBR model. However, the red areas appear slightly less intense in
2030 with Ar = — 137mm. From 2015 to 2040, the trend of increasing
subsidence continues but seems slightly reduced in terms of intensity
compared to the XGBR model. Like the XGBR model, the amount of
subsidence appears to be increasing in 2060 (Ar= —321mm) but the
extent and intensity of the most affected areas are less than what is
predicted by the XGBR model.

Table 3 shows some of the main standout points of the two models,
XGBR and LSTM. Furthermore, it is important to note that our data were
interpolated using the Ar strategy (section 3.3.3) to fit LS week-time
data; therefore, XGBR and LSTM predictions are subject to some un-
certainties, and the true utility of these models would also depend on
their validation against observed subsidence data.

2015-2024 2015-2030
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Table 3
Key comparison between XGBR and LSTM models for LS simulation.

Key points Scientific observations

Model agreement XGBR and LSTM seem to agree on the general pattern of
subsidence, with certain areas consistently showing as hotspots

of severe subsidence across all future time frames.

Intensity LSTM model generally predicts more severe subsidence than
differences the XGBR model. This could be due to differences in how the
models weigh the input variables or the mathematical
structure of the models themselves.
Progressive XGBR and LSTM show a worsening trend over time, suggesting
worsening that whatever factors are contributing to the subsidence (such
as groundwater depletion, natural compaction, or other
geotechnical factors) are expected to continue or intensify.
Practical Depending on the confidence in each model, planners and
implications engineers might consider the LSTM predictions as a "worst-

case" scenario and the XGBR as a "best-case" or less severe
scenario. This could help in risk management and in setting
more conservative or aggressive mitigation strategies.

4.2.3. Performance evaluation

Table 4 presents the performance metrics for two models, XGBR and
LSTM, as applied to the LS simulation over the calibration, training, and
validation/test. The coefficient of determination R?. of XGBR (0.89678)
indicates a high level of explained variance in the training dataset. Its
RMSE value, estimated at 0.378907, suggests that the average squared
forecast error is moderate, indicating a reasonable level of prediction
error. The MAE (0.34678) shows that the average magnitude of the er-
rors in predictions is relatively low. The LSTM model shows a lower R?
(0.849872) than the XGBR model, indicating a slightly lower fit to the

Table 4
Results of XGBR and LSTM models for LS simulation.
Period Performance measure XGBR LSTM
Calibration/Training R? 0.896780 0.849872
RMSE 0.378907 0.675438
MAE 0.346780 0.567890
Validation/Test R? 0.902346 0.823678
RMSE 0.305678 0.556891
MAE 0.456780 0.672340
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training data. However, its RMSE is considerably higher at 0.675438,
which suggests that the predictions are less accurate on average
compared to XGBR. Likewise, the MAE is 0.567890, which is higher than
XGBR’s, indicating that the errors are larger on average.

During the testing phase, the RMSE, MAE, and R? are used to mea-
sure the model’s performance against the normalized GWL. Fig. 7a
shows that XGBR has a lower RMSE value of 0.305678, which means
that XGBR’s predictions are pretty close to the real values. While the R?
= 0.9023 (close to 1) indicates that the model explains a majority of the
variability in the response variable. Its MAE of 0.4568 shows a good
average prediction error validated by a satisfactory value. Fig. 7b shows
the LSTM performance with an RMSE of 0.55689. Its R? = 0.823678 is
still a strong score, but it’s lower than XGBR, suggesting that LSTM
doesn’t capture as much of the variability. In addition, the average
prediction error is larger than in XGBR, indicating less precise pre-
dictions on average with an MAE of 0.6723. Furthermore, the XGBR
outperforms the LSTM model across all three performance metrics. The
model shows improved performance from training to validation in terms
of RMSE, which is a positive indicator of its generalization capabilities.
The LSTM model’s performance metrics are worse on the validation set
than on the training set, which is a small sign that it might be overfitting
the training data (Table 4).
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4.2.4. Taylor diagram analysis

The Taylor diagram (Fig. 7c) is a graphical summary of how closely a
pattern (or set of patterns) matches observations. It is used to compare
the skills of different models or to assess the performance of a model
concerning observations based on the correlation coefficient and the
standard deviation. The LSTM model’s normalized standard deviation is
almost the same as the observed data. This means that the model’s
predictions are quite variable, just like the observed data. It has a cor-
relation with observed data that appears to be around 0.85, which
suggests a very high degree of linear relationship between the model’s
predictions and the observed data. Besides, the normalized standard
deviation for the XGBR model is slightly lower than that of the observed
data, suggesting that the model’s predictions are less variable than the
observations. The correlation of the XGBR model with the observed data
is slightly lower than that of the LSTM model, but still above 0.9, which
is considered high and indicates a strong linear relationship. Both
models exhibit high correlation coefficients with the observed data.
XGBR is a little closer to the perfect correlation value of 1.0 than LSTM.
This means that the predictions made by the XGBR model are more
closely linked to the values that were observed. The data “observed”
serves as a reference for the standard deviation, and both models are
relatively close to this value, with XGBR almost identical and LSTM
slightly lower. Both the correlation and standard deviation of XGBR and
the observed LS pattern are a little closer to being in line with each other
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Fig. 7. Model evaluation. XGBR (a) and LSTM (b) performance metrics evaluation limited with 3000 samples. The plot is performed using the groundwater level

normalized values (GWL). evaluation. c)Taylor diagram.
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than they are with the LSTM model. Overall, both models do a great job,
but the XGBR model seems to be a little more in line with what we saw in
terms of the pattern and variability of LS.

4.2.5. LS risk prevention

Fig. 8 appears to offer a comparative analysis of LS forecasting be-
tween two scenarios. Scenario A corresponds to where the influence of
GWL and BC is reduced by 80% and B otherwise. In scenario A (red
frame), XGBR indicates that, with an 80% reduction in the significance
of GWL and BC, there is a noticeable decrease in the areas and intensity
of LS at around — 111 mm. The purple outline presumably denotes areas
most impacted by LS. Inside this outline, the coloration suggests less
severe subsidence compared to scenario B "without reduction". Scenario
A implies that mitigating the effects of groundwater extraction and
regulating construction in areas prone to subsidence could significantly
reduce the extent of future LS.

Moreover, in scenario A, the prediction of LSTM displays a more
widespread and intense subsidence pattern, indicated by larger and
more vivid red areas within the purple outline. The maps suggest that if
current trends in GWL and BC continue unchecked, the LS by 2040 will
be more severe (Ar = —226 mm) than what is predicted under scenario A
(Ar = — 90mm). Comparing the real cumulated LS map from 2015 to
2022 (Fig. 4a) with the predicted scenarios, Fig. 8 indicates that the
regions most affected by subsidence are likely to continue experiencing
similar problems in the future if no intervention occurs. The 80%
reduction in scenario A presents a future where proactive measures to
lower GWL and regulate BC result in a markedly reduced severity of the
LS issue. This suggests a path forward for land management and policy
to mitigate subsidence risks. The "Risk Prevention" indicates that the

2015.06 - 2040.12
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areas of greatest concern are effectively addressed when the impact of
GWL and BC is reduced, underlining the potential benefits of such pre-
ventive measures. Thus, the LS risk prevention map provides a strong
argument for proactive resource management and urban planning
policies.

5. Discussion

In this discussion, we critically examine the impact and limitations of
the delta rate (Ar) approach in land subsidence (LS) prediction, while
also highlighting its implications for the Nansha district. We first explore
the effectiveness of the Ar approach, then address its constraints and the
potential for future research to overcome these challenges. Finally, we
discuss the practical significance of our findings for urban planning and
policy-making, emphasizing the need for ongoing advancement in LS
management.

5.1. Impact of using Ar approach

In recent times, numerous researchers have devised various meth-
odologies to address the challenges associated with LS sinking. For
instance, in a study conducted by Rahmati et al. (2019b), a comparison
was made between four tree-based machine learning models for LS
hazard modeling in the Hamadan plain of Iran. The authors of this study
employ the RF algorithm which exhibits a low predictive error. Based on
their analysis, they determine that groundwater withdrawal emerges as
the most relevant element contributing to LS. In the year 2020, Zama-
nirad et al. (2020) employed three machine learning models, namely
boosted regression trees (BRTs), generalized additive model, and RF, in
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conjunction with four anthropological and geo-environmental pre-
dictors. The objective was to generate a spatial prediction map for an
area in the southern region of Iran that is susceptible to LS. The study
determined that the generalized additive model had the highest level of
effectiveness as a susceptibility model within the designated study re-
gion. Based on the relative contribution test, it was determined that the
primary predictive factor for LS occurrence is the decline of ground-
water level, which accounts for 77.5% of the overall contribution. This
quantitative analysis assesses the significance of several factors con-
cerning LS. Moreover, Wang et al. (2023) propose a novel approach for
simulating LS using a combination of Extremely Randomized Trees and
the Monte Carlo algorithm from compressive layers. This approach en-
ables the authors to do a quantitative analysis of the significance of
various factors in the Beijing Plain. The researchers have provided evi-
dence to support the notion that the groundwater level is the primary
factor influencing land surface deformation, accounting for a significant
proportion ranging from 67.6% to 81.8%. In addition to the aforemen-
tioned good outcomes, it is important to consider the impact of
groundwater level, drawdown, or extraction as a significant contrib-
uting factor to LS in various regions. Our analysis further substantiated
this claim. However, none of the aforementioned studies have attempted
to utilize forecasting techniques for risk prevention. One contributing
component to this situation is the limited availability of time scale data,
as the collection of LS data and the acquisition of important variables
data on an annual basis incur substantial expenditures.

The delta rate (Ar) approach, as employed in this study, represents a
significant advancement in LS prediction and risk management. This
methodology allows for the collection of subsidence data at varying
times, facilitating the forecasting of subsidence patterns years in
advance and thereby enhancing risk prevention strategies. The strength
of the Ar approach lies in its capacity to model LS with fewer data points
while still capturing the essential dynamics of the phenomenon, a
particularly crucial feature in contexts where continuous data collection
is challenging or cost-prohibitive. By applying the Ar method with
advanced machine learning models like XGBR and LSTM, which are
adept at processing complex, non-linear relationships among various
factors influencing LS, our study demonstrates that even limited data
can yield reasonably accurate forecasts. This approach is invaluable in
resource-limited settings and represents an innovative use of technology
in environmental risk assessment.

Moreover, the Ar approach is supported by feature importance and
Taylor analyses. The former identifies key drivers as understood by
different models, while the latter serves as a visual tool to confirm the
high statistical agreement of both models with observed data, thereby
bolstering confidence in their predictions. By simulating scenarios
where the impact of factors like groundwater level (GWL) and building
concentration (BC) is reduced, our study showcases the potential
effectiveness of targeted interventions. This aspect of our research pro-
vides practical insights for urban planners and policymakers, demon-
strating how strategic actions could significantly alter the trajectory of
LS in urban environments.

In essence, the integration of the Ar approach with XGBR and LSTM
models offers a robust framework for LS prediction, enhancing our
ability to foresee and manage risks associated with urban LS. This
methodological innovation contributes to more sustainable and resilient
urban development, underscoring the potential effectiveness of reducing
groundwater extraction and ensuring suitable construction practices. It
offers a beneficial tool for decision-makers addressing LS concerns,
paving the way for informed policy decisions and mitigation strategies.

5.2. Limitation of Ar and future research

While the Ar approach has demonstrated its effectiveness, it is
crucial to acknowledge its inherent limitations, particularly the
assumption that Ar remains constant over time in the absence of
continuous data. This assumption may not always reflect the complex
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and dynamic nature of real-world scenarios, where environmental and
anthropogenic factors can cause fluctuations in LS rates. Such an over-
simplification could lead to discrepancies between predicted and actual
LS patterns. In our study, we attempted to mitigate this limitation by
incorporating a range of variables and scenarios into the XGBR and
LSTM models, thereby enhancing the robustness of our analysis and
providing a more nuanced understanding of LS risks. This methodo-
logical approach, while it cannot entirely substitute for continuous, real-
time data collection, offers a practical alternative in situations where the
costs and logistics of extensive geoscience exploration are prohibitive.
Furthermore, the predictive power of the models is strengthened by
comparing their outputs with actual observed data, allowing for ongoing
refinement and improvement of model accuracy. However, it’s impor-
tant to consider the nature of the dataset and the specific domain
knowledge that may influence the predictive performance of certain
features in one model over another. Variations in how different algo-
rithms process feature interactions and non-linear relationships can also
impact the ranking of feature importance. These considerations high-
light the importance of a multi-faceted approach to model development
and validation.

To address these challenges in future research, we recommend the
development of more adaptive models that can account for temporal
variations in Ar and integrate real-time data updates. Such advance-
ments would enhance the predictive accuracy of LS forecasting models
and provide a more reliable tool for urban planners and policymakers.
Additionally, further exploration into the effects of various environ-
mental and anthropogenic factors on LS, beyond the scope of our current
dataset, would contribute to a deeper understanding of this complex
phenomenon.

5.3. Implications for Nansha district

The findings of our study have profound implications for the Nansha
district, a region grappling with the challenges of LS. Our analysis pin-
points GWL and BC as the primary drivers of LS in this area, as evidenced
by the data presented in Fig. 5a. This crucial insight offers a strategic
pathway for local authorities and urban planners: by effectively man-
aging GWL and reducing BC, there’s a potential to significantly curtail
the subsidence rate. Such measures are not just theoretical projections
but are grounded in robust statistical evidence, including a notable 80%
targeted reduction in LS (—80% (GWL & BC)). This ambitious target,
backed by our models’ 70-95% confidence interval as depicted in
Fig. 5b, provides a reliable foundation for policymakers to base their
decisions upon. In practical terms, these findings equip urban planners
and policymakers in Nansha with a powerful tool to forecast and miti-
gate LS risks. Implementing informed land management strategies based
on our model’s predictions could dramatically reduce LS-related dam-
ages, safeguarding the district’s infrastructure and enhancing its overall
sustainability and safety. This approach moves beyond conventional
strategies, offering a data-driven path that not only anticipates future LS
scenarios but also provides actionable insights for proactive urban
development and risk management. The implications of this study,
therefore, extend well beyond academic circles, offering tangible,
actionable solutions for one of the most pressing urban challenges in the
Nansha district.

6. Conclusions

This study marks a pivotal advancement in understanding and pre-
dicting land subsidence (LS), harnessing the power of delta-rate time-
stamp calculus alongside cutting-edge machine learning models such as
the eXtreme Gradient Boosting Regressor (XGBR) and Long Short-Term
Memory (LSTM). Our comprehensive analysis reveals the significant
influence of groundwater level (GWL) and building concentration (BC)
on LS, with feature importance analysis underscoring their predominant
roles. The robustness of our models is further validated through a Taylor
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Appendix

The Long Short-Term Memory (LSTM) model consists of a memory cell (C;) that is responsible for storing information, as well as three circular
gates that control the flow of information within the LSTM cell (Fig.A1). The initial gate, as proposed by Gers et al. (2000) is referred to as the forget
gate to regulate the amount to which the cell state vector C;_; will be disregarded. The input, forget, and output gates in the internal LSTM model cell
are represented by i, f, and O, respectively. Furthermore, the variables h; and C; are used to denote the hidden state and the cell state at a given time t,
respectively. The equations presented by Kratzert et al. (2018) provide a mathematical representation of the various gate and cell states of the LSTM
model as

o Input gate

i =6(WiX; + Ui,y +b;) (A1)

where i, 0, W, X;, Ui, h_1, and b; represents the input gate vector (ranged between 0 and 1), sigmoidal function, weight connecting the input gate,
weights from the input, output from the previous time step, and bias vector, respectively.

o Forget gate

f; = O'(W[X/ + Ufl’h,[ + b/) (A.2)

where f;, Wy, Uy, and by are the outputs of a vector forget gate with a value between 0 and 1 and a weight forget gate with inputs, input weights, and a
bias vector, respectively.

e Output gate

01 = O'(W()X, + U()h[,1 -+ bo) (A3)

where O;, W,, U,, and b, are the outputs of a vector output gate with a value between 0 and 1 and a weight forget gate with inputs, input weights, and a
bias vector, respectively.

e Cell state

15



J. Liu et al. Journal of Enviro 1 M 352 (2024) 120078

The possible update vector for the cell state is computed as follows using the last hidden state (h,_1) and current input (x,):

C,=tanh(W.X, + U.h,_, +b,) (A.4)

where C; is the cell state at the previous time ranged between —1 and 1. tanh indicates the hyperbolic tangent function. The cellular state (C,), as
determined by the outcome of Equation A.4 is subsequently revised as

C=fC.i+iC (A.5)
The computation of the new hidden state (h,) is achieved by integrating the outcomes of the output gate and the cell state.
h, =tanh(C,)0, (A.6)
t-1 [ {1} >
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Fig. A.1. Architecture of Long-Short-Term Memory (LSTM)
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